Research
Print page Print page
Switch language
Rigshospitalet - a part of Copenhagen University Hospital
Published

Impaired glycogen breakdown and synthesis in phosphoglucomutase 1 deficiency

Research output: Contribution to journalJournal articleResearchpeer-review

  1. Habitual Physical Activity in Patients with Myasthenia Gravis Assessed by Accelerometry and Questionnaire

    Research output: Contribution to journalJournal articleResearchpeer-review

  2. Muscle biopsy and MRI findings in ANO5-related myopathy

    Research output: Contribution to journalJournal articleResearchpeer-review

View graph of relations

OBJECTIVE: We investigated metabolism and physiological responses to exercise in an 18-year-old woman with multiple congenital abnormalities and exertional muscle fatigue, tightness, and rhabdomyolysis.

METHODS: We studied biochemistry in muscle and fibroblasts, performed mutation analysis, assessed physiological responses to forearm and cycle-ergometer exercise combined with stable-isotope techniques and indirect calorimetry, and evaluated the effect of IV glucose infusion and oral sucrose ingestion on the exercise response.

RESULTS: Phosphoglucomutase type 1 (PGM1) activity in muscle and fibroblasts was severely deficient and PGM1 in muscle was undetectable by Western blot. The patient was compound heterozygous for missense (R422W) and nonsense (Q530X) mutations in PGM1. Forearm exercise elicited no increase in lactate, but an exaggerated increase in ammonia, and provoked a forearm contracture. Comparable to patients with McArdle disease, the patient developed a 'second wind' with a spontaneous fall in exercise heart rate and perceived exertion. Like in McArdle disease, this was attributable to an increase in muscle oxidative capacity. Carbohydrate oxidation was blocked during exercise, and the patient had exaggerated oxidation of fat to fuel exercise. Exercise heart rate and perceived exertion were lower after IV glucose and oral sucrose. Muscle glycogen level was low normal.

CONCLUSIONS: The second wind phenomenon has been considered to be pathognomonic for McArdle disease, but we demonstrate that it can also be present in PGM1 deficiency. We show that severe loss of PGM1 activity causes blocked muscle glycogenolysis that mimics McArdle disease, but may also limit glycogen synthesis, which broadens the phenotypic spectrum of this disorder.

Original languageEnglish
JournalMolecular Genetics and Metabolism
Volume122
Issue number3
Pages (from-to)117-121
Number of pages5
ISSN1096-7192
DOIs
Publication statusPublished - Nov 2017

    Research areas

  • Journal Article

ID: 52147557