Research
Print page Print page
Switch language
Rigshospitalet - a part of Copenhagen University Hospital
Published

Genomic Alterations in Human Papillomavirus-Positive and -Negative Conjunctival Squamous Cell Carcinomas

Research output: Contribution to journalJournal articleResearchpeer-review

DOI

  1. Ametropia and Emmetropization in CNGB3 Achromatopsia

    Research output: Contribution to journalJournal articleResearchpeer-review

  2. Retinal Structure in RPE65-Associated Retinal Dystrophy

    Research output: Contribution to journalJournal articleResearchpeer-review

  3. Five-Year Change in Choroidal Thickness in Relation to Body Development and Axial Eye Elongation: The CCC2000 Eye Study

    Research output: Contribution to journalJournal articleResearchpeer-review

  4. Small Hard Macular Drusen and Associations in 11- to 12-Year-Old Children in the Copenhagen Child Cohort 2000 Eye Study

    Research output: Contribution to journalJournal articleResearchpeer-review

View graph of relations

Purpose: The genomic alterations contributing to the pathogenesis of conjunctival squamous cell carcinomas (SCCs) and their precursor lesions are poorly understood and hamper our ability to develop molecular therapies to reduce the recurrence rates and treatment-related morbidities of this disease. We aimed to characterize the somatic DNA alterations in human papillomavirus (HPV)-positive and HPV-negative conjunctival SCC.

Methods: Patients diagnosed with conjunctival SCC in situ or SCC treated in ocular oncology referral centers in Denmark were included. HPV detection (HPV DNA PCR, p16 immunohistochemistry, and mRNA in situ hybridization) and targeted capture-based next-generation sequencing of 523 genes frequently involved in cancer were performed to describe the mutational profile based on HPV status.

Results: Tumor tissue was available in 33 cases (n = 8 conjunctival SCCs in situ, n = 25 conjunctival SCCs), constituting 25 male and 8 female patients. Nine cases were HPV positive. The HPV-positive SCCs in situ and SCCs were characterized by transcriptionally active high-risk HPV (types 16 and 39) within the tumor cells, frequent mutations in PIK3CA (n = 5/9), and wild-type TP53, CDKN2A, and RB1, while the HPV-negative counterparts harbored frequent mutations in TP53 (n = 21/24), CDKN2A (n = 7/24), and RB1 (n = 6/24).

Conclusions: Our findings have delineated two potentially distinct distributions of somatic mutations in conjunctival SCC based on HPV status-pointing to different biological mechanisms of carcinogenesis. The present findings support a causal role of HPV in a subset of conjunctival SCC.

Original languageEnglish
Article number11
JournalInvestigative ophthalmology & visual science
Volume62
Issue number14
Pages (from-to)11
ISSN0146-0404
DOIs
Publication statusPublished - 1 Nov 2021

    Research areas

  • Carcinoma, Conjunctiva, Human papillomavirus, Next-generation sequencing

ID: 69026119