Research
Print page Print page
Switch language
Rigshospitalet - a part of Copenhagen University Hospital
Published

Diversity of metabolic profiles of cystic fibrosis Pseudomonas aeruginosa during the early stages of lung infection

Research output: Contribution to journalJournal articleResearchpeer-review

DOI

  1. Quorum-sensing-regulated virulence factors in Pseudomonas aeruginosa are toxic to Lucilia sericata maggots

    Research output: Contribution to journalJournal articleResearchpeer-review

  2. Pseudomonas aeruginosa recognizes and responds aggressively to the presence of polymorphonuclear leukocytes

    Research output: Contribution to journalJournal articleResearchpeer-review

  3. Impact of Pseudomonas aeruginosa quorum sensing on biofilm persistence in an in vivo intraperitoneal foreign-body infection model

    Research output: Contribution to journalJournal articleResearchpeer-review

  1. Primary ciliary dyskinesia patients have the same P. aeruginosa clone in sinuses and lungs

    Research output: Contribution to journalJournal articleResearchpeer-review

  2. Structure of Pseudomonas aeruginosa ribosomes from an aminoglycoside-resistant clinical isolate

    Research output: Contribution to journalJournal articleResearchpeer-review

View graph of relations

Pseudomonas aeruginosa is the dominant pathogen infecting the airways of cystic fibrosis (CF) patients. During the intermittent colonization phase, P. aeruginosa resembles environmental strains but later evolves to the chronic adapted phenotype characterized by resistance to antibiotics and mutations in the global regulator genes mucA, lasR and rpoN. Our aim was to understand the metabolic changes occurring over time and between niches of the CF airways. By applying Phenotype MicroArrays, we investigated changes in the carbon and nitrogen catabolism of subsequently clonally related mucoid and non-mucoid (NM) lung and sinus P. aeruginosa isolates from 10 CF patients (five intermittently colonized/five chronically infected). We found the most pronounced catabolic changes for the early/late NM isolate comparisons, with respiratory reduction seen for all chronically infecting isolates and two intermittently colonizing isolates. Fewer differences were observed between sinus and lung isolates, showing a higher degree of isolate similarity between these two niches. Modest respiratory changes were seen for the early isolate/PAO1 comparisons, indicating colonization with environmental isolates. Assignment of metabolic pathways via the KEGG database showed a prevalence of substrates involved in the metabolism of Ala, Asp and Glu, d-Ala, and Arg and Pro. In conclusion, extensive heterogeneity in the metabolic profiles of the P. aeruginosa isolates was observed from the initial stages of the infection, showing a rapid diversification of the bacteria in the heterogeneous environment of the lung. Metabolic reduction seems to be a common trait and therefore an adaptive phenotype, though it can be reached via multiple metabolic pathways.

Original languageEnglish
JournalMicrobiology (Reading, England)
Volume161
Issue number7
Pages (from-to)1447-62
Number of pages16
DOIs
Publication statusPublished - Jul 2015

ID: 46284087