Research
Print page Print page
Switch language
Rigshospitalet - a part of Copenhagen University Hospital
Published

Developing and validating COVID-19 adverse outcome risk prediction models from a bi-national European cohort of 5594 patients

Research output: Contribution to journalJournal articleResearchpeer-review

  1. Infants with congenital heart defects have reduced brain volumes

    Research output: Contribution to journalJournal articleResearchpeer-review

  2. Using machine learning for predicting intensive care unit resource use during the COVID-19 pandemic in Denmark

    Research output: Contribution to journalJournal articleResearchpeer-review

  3. Effect of liraglutide on expression of inflammatory genes in type 2 diabetes

    Research output: Contribution to journalJournal articleResearchpeer-review

  4. Extrarenal expression of α-klotho, the kidney related longevity gene, in Heterocephalus glaber, the long living Naked Mole Rat

    Research output: Contribution to journalJournal articleResearchpeer-review

  1. Effect of immunoglobulin G on cytokine response in necrotising soft-tissue infection: a post-hoc analysis

    Research output: Contribution to journalJournal articleResearchpeer-review

  2. Using machine learning for predicting intensive care unit resource use during the COVID-19 pandemic in Denmark

    Research output: Contribution to journalJournal articleResearchpeer-review

  3. The effects of adding quinolones to beta-lactam antibiotics for sepsis

    Research output: Contribution to journalReviewResearchpeer-review

  4. Response to Aviv et al

    Research output: Contribution to journalLetterResearchpeer-review

View graph of relations

Patients with severe COVID-19 have overwhelmed healthcare systems worldwide. We hypothesized that machine learning (ML) models could be used to predict risks at different stages of management and thereby provide insights into drivers and prognostic markers of disease progression and death. From a cohort of approx. 2.6 million citizens in Denmark, SARS-CoV-2 PCR tests were performed on subjects suspected for COVID-19 disease; 3944 cases had at least one positive test and were subjected to further analysis. SARS-CoV-2 positive cases from the United Kingdom Biobank was used for external validation. The ML models predicted the risk of death (Receiver Operation Characteristics-Area Under the Curve, ROC-AUC) of 0.906 at diagnosis, 0.818, at hospital admission and 0.721 at Intensive Care Unit (ICU) admission. Similar metrics were achieved for predicted risks of hospital and ICU admission and use of mechanical ventilation. Common risk factors, included age, body mass index and hypertension, although the top risk features shifted towards markers of shock and organ dysfunction in ICU patients. The external validation indicated fair predictive performance for mortality prediction, but suboptimal performance for predicting ICU admission. ML may be used to identify drivers of progression to more severe disease and for prognostication patients in patients with COVID-19. We provide access to an online risk calculator based on these findings.

Original languageEnglish
Article number3246
JournalScientific Reports
Volume11
Issue number1
Pages (from-to)3246
ISSN2045-2322
DOIs
Publication statusPublished - 5 Feb 2021

ID: 62084862