Research
Print page Print page
Switch language
Rigshospitalet - a part of Copenhagen University Hospital
Published

Chromothripsis and DNA Repair Disorders

Research output: Contribution to journalReviewpeer-review

DOI

  1. Deciphering the premature mortality in PIGA-CDG - An untold story

    Research output: Contribution to journalJournal articleResearchpeer-review

View graph of relations

Chromothripsis is a mutational mechanism leading to complex and relatively clustered chromosomal rearrangements, resulting in diverse phenotypic outcomes depending on the involved genomic landscapes. It may occur both in the germ and the somatic cells, resulting in congenital and developmental disorders and cancer, respectively. Asymptomatic individuals may be carriers of chromotriptic rearrangements and experience recurrent reproductive failures when two or more chromosomes are involved. Several mechanisms are postulated to underlie chromothripsis. The most attractive hypothesis involves chromosome pulverization in micronuclei, followed by the incorrect reassembly of fragments through DNA repair to explain the clustered nature of the observed complex rearrangements. Moreover, exogenous or endogenous DNA damage induction and dicentric bridge formation may be involved. Chromosome instability is commonly observed in the cells of patients with DNA repair disorders, such as ataxia telangiectasia, Nijmegen breakage syndrome, and Bloom syndrome. In addition, germline variations of TP53 have been associated with chromothripsis in sonic hedgehog medulloblastoma and acute myeloid leukemia. In the present review, we focus on the underlying mechanisms of chromothripsis and the involvement of defective DNA repair genes, resulting in chromosome instability and chromothripsis-like rearrangements.

Original languageEnglish
JournalJournal of Clinical Medicine
Volume9
Issue number3
Pages (from-to)613
ISSN2077-0383
DOIs
Publication statusPublished - 25 Feb 2020

    Research areas

  • chromothripsis, structural variants, DNA repair, DNA repair disorders, DNA double-strand breaks (DSBs), ataxia telangiectasia mutated (ATM), ataxia telangiectasia and Rad3-related (ATR), TP53, micronuclei, chromosome pulverization

ID: 59748309