Forskning
Udskriv Udskriv
Switch language
Rigshospitalet - en del af Københavns Universitetshospital
Udgivet

Vascular pathology of large cerebral arteries in experimental subarachnoid hemorrhage: Vasoconstriction, functional CGRP depletion and maintained CGRP sensitivity

Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

  1. CGRP in rat mesenteric artery and vein - receptor expression, CGRP presence and potential roles

    Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

  2. The effects of CGRP in vascular tissue - Classical vasodilation, shadowed effects and systemic dilemmas

    Publikation: Bidrag til tidsskriftReviewForskningpeer review

  3. Gasotransmitters and the immune system: Mode of action and novel therapeutic targets

    Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

  4. Vascular and molecular pharmacology of the metabolically stable CGRP analogue, SAX

    Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

  1. Expression of the CGRP Family of Neuropeptides and their Receptors in the Trigeminal Ganglion

    Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

  2. CGRP in rat mesenteric artery and vein - receptor expression, CGRP presence and potential roles

    Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

  3. Cellular distribution of PACAP-38 and PACAP receptors in the rat brain: Relation to migraine activated regions

    Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

  4. Understanding side-effects of anti-CGRP and anti-CGRP receptor antibodies

    Publikation: Bidrag til tidsskriftLetterForskningpeer review

Vis graf over relationer

Subarachnoid hemorrhage (SAH) is associated with increased cerebral artery sensitivity to vasoconstrictors and release of the perivascular sensory vasodilator CGRP. In the current study the constrictive phenotype and the vasodilatory effects of exogenous and endogenous perivascular CGRP were characterized in detail applying myograph technology to cerebral artery segments isolated from experimental SAH and sham-operated rats. Following experimental SAH, cerebral arteries exhibited increased vasoconstriction to endothelin-1, 5-hydroxytryptamine and U46419. In addition, depolarization-induced vasoconstriction (60mM potassium) was significantly increased, supporting a general SAH-associated vasoconstrictive phenotype. Using exogenous CGRP, we demonstrated that sensitivity of the arteries to CGRP-induced vasodilation was unchanged after SAH. However, vasodilation in response to capsaicin (100nM), a sensory nerve activator used to release perivascular CGRP, was significantly reduced by SAH (P = 0.0079). Because CGRP-mediated dilation is an important counterbalance to increased arterial contractility, a reduction in CGRP release after SAH would exacerbate the vasospasms that occur after SAH. A similar finding was obtained with artery culture (24h), an in vitro model of SAH-induced vascular dysfunction. The arterial segments maintained sensitivity to exogenous CGRP but showed reduced capsaicin-induced vasodilation. To test whether a metabolically stable CGRP analogue could be used to supplement the loss of perivascular CGRP release in SAH, SAX was systemically administered in our in vivo SAH model. SAX treatment, however, induced CGRP-desensitization and did not prevent the development of vasoconstriction in cerebral arteries after SAH.

OriginalsprogEngelsk
TidsskriftEuropean Journal of Pharmacology
Vol/bind846
Sider (fra-til)109-118
Antal sider10
ISSN0014-2999
DOI
StatusUdgivet - 2019

ID: 56377850