Forskning
Udskriv Udskriv
Switch language
Rigshospitalet - en del af Københavns Universitetshospital
Udgivet

Towards a Flexible Deep Learning Method for Automatic Detection of Clinically Relevant Multi-Modal Events in the Polysomnogram

Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

DOI

  1. A Clinically Applicable Interactive Micro and Macro-Sleep Staging Algorithm for Elderly and Patients with Neurodegeneration

    Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

  2. A Blind Source-Based Method for Automated Artifact-Correction in Standard Sleep EEG

    Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

  3. A New Fully Automated Random-Forest Algorithm for Sleep Staging

    Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

  4. Deep residual networks for automatic sleep stage classification of raw polysomnographic waveforms

    Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

  5. Mobile Apnea Screening System for at-home Recording and Analysis of Sleep Apnea Severity

    Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

  1. Arousal characteristics in patients with Parkinson's disease and isolated rapid eye movement sleep behavior disorder

    Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

  2. Brain tumours in children and adolescents may affect the circadian rhythm and quality of life

    Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

  3. Brain tumours result in sleep disorders in children and adolescents

    Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

  4. European guideline and expert statements on the management of narcolepsy in adults and children

    Publikation: Bidrag til tidsskriftReviewForskningpeer review

  5. Automatic Segmentation to Cluster Patterns of Breathing in Sleep Apnea

    Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

  • Alexander Neergaard Olesen
  • Stanislas Chambon
  • Valentin Thorey
  • Poul Jennum
  • Emmanuel Mignot
  • Helge B D Sorensen
Vis graf over relationer

Much attention has been given to automatic sleep staging algorithms in past years, but the detection of discrete events in sleep studies is also crucial for precise characterization of sleep patterns and possible diagnosis of sleep disorders. We propose here a deep learning model for automatic detection and annotation of arousals and leg movements. Both of these are commonly seen during normal sleep, while an excessive amount of either is linked to disrupted sleep patterns, excessive daytime sleepiness impacting quality of life, and various sleep disorders. Our model was trained on 1,485 subjects and tested on 1,000 separate recordings of sleep. We tested two different experimental setups and found optimal arousal detection was attained by including a recurrent neural network module in our default model with a dynamic default event window (F1 = 0.75), while optimal leg movement detection was attained using a static event window (F1 = 0.65). Our work show promise while still allowing for improvements. Specifically, future research will explore the proposed model as a general-purpose sleep analysis model.

OriginalsprogEngelsk
TidsskriftI E E E Engineering in Medicine and Biology Society. Conference Proceedings
Vol/bind2019
Sider (fra-til)556-561
Antal sider6
ISSN1557-170X
DOI
StatusUdgivet - jul. 2019

ID: 59152382