Forskning
Udskriv Udskriv
Switch language
Rigshospitalet - en del af Københavns Universitetshospital
Udgivet

Synthesis and characterization of (18)F-labeled active site inhibited factor VII (ASIS)

Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

DOI

  1. Radiosynthesis and preclinical evaluation of [11 C]Cimbi-701 - Towards the imaging of cerebral 5-HT7 receptors

    Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

  2. Evaluation of [18 F]2FP3 in pigs and non-human primates

    Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

  1. Tumor cell MT1-MMP is dispensable for osteosarcoma tumor growth, bone degradation and lung metastasis

    Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

  2. Limited diagnostic utility of Chromogranin A measurements in workup of neuroendocrine tumors

    Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

  3. Changes in cardiac microvascular function in persons with type 2 diabetes in relation to kidney function

    Publikation: KonferencebidragKonferenceabstrakt til konferenceForskningpeer review

Vis graf over relationer

Activated factor VII blocked in the active site with Phe-Phe-Arg-chloromethyl ketone (active site inhibited factor VII (ASIS)) is a 50-kDa protein that binds with high affinity to its receptor, tissue factor (TF). TF is a transmembrane glycoprotein that plays an important role in, for example, thrombosis, metastasis, tumor growth, and tumor angiogenesis. The aim of this study was to develop an (18)F-labeled ASIS derivative to assess TF expression in tumors. Active site inhibited factor VII was labeled using N-succinimidyl-4-[(18)F]fluorobenzoate, and the [(18)F]ASIS was purified on a PD-10 desalting column. The radiochemical yield was 25 ± 6%, the radiochemical purity was >97%, and the pseudospecific radioactivity was 35 ± 9 GBq/µmol. The binding efficacy was evaluated in pull-down experiments, which monitored the binding of unlabeled ASIS and [(18)F]ASIS to TF and to a specific anti-factor VII antibody (F1A2-mAb). No significant difference in binding efficacy between [(18)F]ASIS and ASIS could be detected. Furthermore, [(18)F]ASIS was relatively stable in vitro and in vivo in mice. In conclusion, [(18)F]ASIS has for the first time been successfully synthesized as a possible positron emission tomography tracer to image TF expression levels. In vivo positron emission tomography studies to evaluate the full potential of [(18)F]ASIS are in progress.

OriginalsprogEngelsk
TidsskriftJournal of Labelled Compounds and Radiopharmaceuticals
Vol/bind58
Udgave nummer5
Sider (fra-til)196-201
Antal sider6
ISSN0362-4803
DOI
StatusUdgivet - 15 maj 2015

ID: 46266900