Forskning
Udskriv Udskriv
Switch language
Rigshospitalet - en del af Københavns Universitetshospital
Udgivet

Robust, ECG-based detection of Sleep-disordered breathing in large population-based cohorts

Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

DOI

  1. Functional brown adipose tissue and sympathetic activity after cold exposure in humans with type 1 narcolepsy

    Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

  2. Cerebrospinal fluid biomarkers of neurodegeneration are decreased or normal in narcolepsy

    Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

  3. Breathing Disturbances Without Hypoxia Are Associated With Objective Sleepiness in Sleep Apnea

    Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

  4. Onset of Impaired Sleep and Cardiovascular Disease Risk Factors: A Longitudinal Study

    Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

  5. HLA DQB1*06:02 negative narcolepsy with hypocretin/orexin deficiency

    Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

  1. Pupillary light responses in type 1 and type 2 diabetics with and without retinopathy

    Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

  2. Long-term health and socioeconomic consequences of childhood and adolescent-onset of narcolepsy

    Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

  3. Long-term health and socioeconomic outcome of obstructive sleep apnea in children and adolescents

    Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

  4. The role of sleep in the pathophysiology of nocturnal enuresis

    Publikation: Bidrag til tidsskriftReviewForskningpeer review

  • Mads Olsen
  • Emmanuel Mignot
  • Poul J Jennum
  • Helge Bjarup Dissing Sorensen
Vis graf over relationer

STUDY OBJECTIVES: Up to 5% of adults in Western countries have undiagnosed sleep-disordered breathing (SDB). Studies have shown that electrocardiogram (ECG)-based algorithms can identify SDB and may provide alternative screening. Most studies, however, have limited generalizability as they have been conducted using the apnea-ECG database, a small sample database that lacks complex SDB cases. METHODS: Here, we developed a fully automatic, data-driven algorithm that classifies apnea and hypopnea events based on the ECG using almost 10 000 polysomnographic sleep recordings from two large population-based samples, the Sleep Heart Health Study (SHHS) and the Multi-Ethnic Study of Atherosclerosis (MESA), which contain subjects with a broad range of sleep and cardiovascular diseases (CVDs) to ensure heterogeneity. RESULTS: Performances on average were sensitivity(Se)=68.7%, precision (Pr)=69.1%, score (F1)=66.6% per subject, and accuracy of correctly classifying apnea-hypopnea index (AHI) severity score was Acc=84.9%. Target AHI and predicted AHI were highly correlated (R2 = 0.828) across subjects, indicating validity in predicting SDB severity. Our algorithm proved to be statistically robust between databases, between different periodic leg movement index (PLMI) severity groups, and for subjects with previous CVD incidents. Further, our algorithm achieved the state-of-the-art performance of Se=87.8%, Sp=91.1%, Acc=89.9% using independent comparisons and Se=90.7%, Sp=95.7%, Acc=93.8% using a transfer learning comparison on the apnea-ECG database. CONCLUSIONS: Our robust and automatic algorithm constitutes a minimally intrusive and inexpensive screening system for the detection of SDB events using the ECG to alleviate the current problems and costs associated with diagnosing SDB cases and to provide a system capable of identifying undiagnosed SDB cases.

OriginalsprogEngelsk
TidsskriftSleep
Vol/bind43
Udgave nummer5
Sider (fra-til)zsz276
ISSN0161-8105
DOI
StatusUdgivet - 12 maj 2020

Bibliografisk note

© Sleep Research Society 2019. Published by Oxford University Press on behalf of the Sleep Research Society. All rights reserved. For permissions, please e-mail journals.permissions@oup.com.

ID: 59152572