Forskning
Udskriv Udskriv
Switch language
Rigshospitalet - en del af Københavns Universitetshospital
Udgivet

Quantitative single-cell proteomics as a tool to characterize cellular hierarchies

Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

DOI

  1. Capsid-like particles decorated with the SARS-CoV-2 receptor-binding domain elicit strong virus neutralization activity

    Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

  2. Common variants in Alzheimer's disease and risk stratification by polygenic risk scores

    Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

  3. Ultraviolet radiation drives mutations in a subset of mucosal melanomas

    Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

  4. Determinants of penetrance and variable expressivity in monogenic metabolic conditions across 77,184 exomes

    Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

  1. Hemorrhage and saline resuscitation are associated with epigenetic and proteomic reprogramming in the rat lung

    Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

  2. Basement membrane stiffness determines metastases formation

    Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

  3. The ASXL1-G643W variant accelerates the development of CEBPA mutant acute myeloid leukemia

    Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

Vis graf over relationer

Large-scale single-cell analyses are of fundamental importance in order to capture biological heterogeneity within complex cell systems, but have largely been limited to RNA-based technologies. Here we present a comprehensive benchmarked experimental and computational workflow, which establishes global single-cell mass spectrometry-based proteomics as a tool for large-scale single-cell analyses. By exploiting a primary leukemia model system, we demonstrate both through pre-enrichment of cell populations and through a non-enriched unbiased approach that our workflow enables the exploration of cellular heterogeneity within this aberrant developmental hierarchy. Our approach is capable of consistently quantifying ~1000 proteins per cell across thousands of individual cells using limited instrument time. Furthermore, we develop a computational workflow (SCeptre) that effectively normalizes the data, integrates available FACS data and facilitates downstream analysis. The approach presented here lays a foundation for implementing global single-cell proteomics studies across the world.

OriginalsprogEngelsk
Artikelnummer3341
TidsskriftNature Communications
Vol/bind12
Udgave nummer1
Sider (fra-til)3341
ISSN2041-1723
DOI
StatusUdgivet - 7 jun. 2021

ID: 66219327