Forskning
Udskriv Udskriv
Switch language
Rigshospitalet - en del af Københavns Universitetshospital
Udgivet

Neural network analysis of sleep stages enables efficient diagnosis of narcolepsy

Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

DOI

  1. An atlas of O-linked glycosylation on peptide hormones reveals diverse biological roles

    Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

  2. A phenome-wide association and Mendelian Randomisation study of polygenic risk for depression in UK Biobank

    Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

  3. Author Correction: Retrospective evaluation of whole exome and genome mutation calls in 746 cancer samples

    Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

  4. SUCLA2 mutations cause global protein succinylation contributing to the pathomechanism of a hereditary mitochondrial disease

    Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

  5. PCM1 is necessary for focal ciliary integrity and is a candidate for severe schizophrenia

    Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

  1. Large genome-wide association study identifies three novel risk variants for restless legs syndrome

    Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

  2. A review of sleep research in patients with spinal cord injury

    Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

  3. Pupillary light responses in type 1 and type 2 diabetics with and without retinopathy

    Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

  • Jens B Stephansen
  • Alexander N Olesen
  • Mads Olsen
  • Aditya Ambati
  • Eileen B Leary
  • Hyatt E Moore
  • Oscar Carrillo
  • Ling Lin
  • Fang Han
  • Han Yan
  • Yun L Sun
  • Yves Dauvilliers
  • Sabine Scholz
  • Lucie Barateau
  • Birgit Hogl
  • Ambra Stefani
  • Seung Chul Hong
  • Tae Won Kim
  • Fabio Pizza
  • Giuseppe Plazzi
  • Stefano Vandi
  • Elena Antelmi
  • Dimitri Perrin
  • Samuel T Kuna
  • Paula K Schweitzer
  • Clete Kushida
  • Paul E Peppard
  • Helge B D Sorensen
  • Poul Jennum
  • Emmanuel Mignot
Vis graf over relationer

Analysis of sleep for the diagnosis of sleep disorders such as Type-1 Narcolepsy (T1N) currently requires visual inspection of polysomnography records by trained scoring technicians. Here, we used neural networks in approximately 3,000 normal and abnormal sleep recordings to automate sleep stage scoring, producing a hypnodensity graph-a probability distribution conveying more information than classical hypnograms. Accuracy of sleep stage scoring was validated in 70 subjects assessed by six scorers. The best model performed better than any individual scorer (87% versus consensus). It also reliably scores sleep down to 5 s instead of 30 s scoring epochs. A T1N marker based on unusual sleep stage overlaps achieved a specificity of 96% and a sensitivity of 91%, validated in independent datasets. Addition of HLA-DQB1*06:02 typing increased specificity to 99%. Our method can reduce time spent in sleep clinics and automates T1N diagnosis. It also opens the possibility of diagnosing T1N using home sleep studies.

OriginalsprogEngelsk
TidsskriftNature Communications
Vol/bind9
Udgave nummer1
Sider (fra-til)5229
ISSN2041-1723
DOI
StatusUdgivet - 2018

ID: 56226673