Publikation: Bidrag til tidsskrift › Tidsskriftartikel › Forskning › peer review
Nucleophosmin (NPM1) is amongst the most frequently mutated genes in acute myeloid leukemia (AML). It is not known, however, how the resulting oncoprotein mutant-NPM1 is leukemogenic. To reveal the cellular machinery in which NPM1 participates in myeloid cells, we analyzed the endogenous NPM1 protein-interactome by mass-spectrometry, and discovered abundant amounts of the master transcription factor driver of monocyte lineage-differentiation PU.1 (SPI1). Mutant-NPM1, which aberrantly accumulates in cytoplasm, dislocated PU.1 into cytoplasm with it. CEBPA and RUNX1, the master transcription factors that collaborate with PU.1 to activate granulo-monocytic lineage-fates, remained nuclear, but without PU.1, their coregulator interactions were toggled from coactivators to corepressors, repressing instead of activating greater than 500 granulocyte and monocyte terminal-differentiation genes. An inhibitor of nuclear export, selinexor, by locking mutant-NPM1/PU.1 in the nucleus, activated terminal monocytic fates. Direct depletion of the corepressor DNA methyltransferase 1 (DNMT1) from the CEBPA/RUNX1 protein interactome using the clinical drug decitabine activated terminal granulocytic fates. Together, these non-cytotoxic treatments extended survival by greater than 160 days versus vehicle in a patient-derived xenotransplant model of NPM1/FLT3-mutated AML. In sum, mutant-NPM1 represses monocyte and granulocyte terminal-differentiation by disrupting PU.1/CEBPA/RUNX1 collaboration, a transforming action that can be reversed by pharmacodynamically-directed dosing of clinical small molecules.
Originalsprog | Engelsk |
---|---|
Tidsskrift | The Journal of clinical investigation |
Vol/bind | 128 |
Udgave nummer | 10 |
Sider (fra-til) | 4260-4279 |
ISSN | 0021-9738 |
DOI | |
Status | Udgivet - 1 okt. 2018 |
ID: 54954225