Forskning
Udskriv Udskriv
Switch language
Rigshospitalet - en del af Københavns Universitetshospital
Udgivet

Influence of intranasal and carotid cooling on cerebral temperature balance and oxygenation

Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

DOI

  1. Clinically Valuable Quality Control for PET/MRI Systems: Consensus Recommendation From the HYBRID Consortium

    Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

  2. Propagation of Spermatogonial Stem Cell-Like Cells From Infant Boys

    Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

  3. Glucagon Receptor Signaling and Lipid Metabolism

    Publikation: Bidrag til tidsskriftReviewForskningpeer review

Vis graf over relationer

The present study evaluated the influence of intranasal cooling with balloon catheters, increased nasal ventilation, or percutaneous cooling of the carotid arteries on cerebral temperature balance and oxygenation in six healthy male subjects. Aortic arch and internal jugular venous blood temperatures were measured to assess the cerebral heat balance and corresponding paired blood samples were obtained to evaluate cerebral metabolism and oxygenation at rest, following 60 min of intranasal cooling, 5 min of nasal ventilation, and 15 min with carotid cooling. Intranasal cooling induced a parallel drop in jugular venous and arterial blood temperatures by 0.30 ± 0.08°C (mean ± SD), whereas nasal ventilation and carotid cooling failed to lower the jugular venous blood temperature. The magnitude of the arterio-venous temperature difference across the brain remained unchanged at -0.33 ± 0.05°C following intranasal and carotid cooling, but increased to -0.44 ± 0.11°C (P < 0.05) following nasal ventilation. Calculated cerebral capillary oxygen tension was 43 ± 3 mmHg at rest and remained unchanged during intranasal and carotid cooling, but decreased to 38 ± 2 mmHg (P < 0.05) following increased nasal ventilation. In conclusion, percutaneous cooling of the carotid arteries and intranasal cooling with balloon catheters are insufficient to influence cerebral oxygenation in normothermic subjects as the cooling rate is only 0.3°C per hour and neither intranasal nor carotid cooling is capable of inducing selective brain cooling.

OriginalsprogEngelsk
TidsskriftFrontiers in physiology
Vol/bind5
Sider (fra-til)79
ISSN1664-042X
DOI
StatusUdgivet - 2014

ID: 45071701