Forskning
Udskriv Udskriv
Switch language
Rigshospitalet - en del af Københavns Universitetshospital
Udgivet

Identification of epilepsy-associated neuronal subtypes and gene expression underlying epileptogenesis

Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

DOI

  1. Pharmacological but not physiological GDF15 suppresses feeding and the motivation to exercise

    Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

  2. Capsid-like particles decorated with the SARS-CoV-2 receptor-binding domain elicit strong virus neutralization activity

    Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

  3. Ultraviolet radiation drives mutations in a subset of mucosal melanomas

    Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

  4. Author Correction: Retrospective evaluation of whole exome and genome mutation calls in 746 cancer samples

    Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

  • Ulrich Pfisterer
  • Viktor Petukhov
  • Samuel Demharter
  • Johanna Meichsner
  • Jonatan J Thompson
  • Mykhailo Y Batiuk
  • Andrea Asenjo Martinez
  • Navneet A Vasistha
  • Ashish Thakur
  • Jens Mikkelsen
  • Istvan Adorjan
  • Lars H Pinborg
  • Tune H Pers
  • Jakob von Engelhardt
  • Peter V Kharchenko
  • Konstantin Khodosevich
Vis graf over relationer

Epilepsy is one of the most common neurological disorders, yet its pathophysiology is poorly understood due to the high complexity of affected neuronal circuits. To identify dysfunctional neuronal subtypes underlying seizure activity in the human brain, we have performed single-nucleus transcriptomics analysis of >110,000 neuronal transcriptomes derived from temporal cortex samples of multiple temporal lobe epilepsy and non-epileptic subjects. We found that the largest transcriptomic changes occur in distinct neuronal subtypes from several families of principal neurons (L5-6_Fezf2 and L2-3_Cux2) and GABAergic interneurons (Sst and Pvalb), whereas other subtypes in the same families were less affected. Furthermore, the subtypes with the largest epilepsy-related transcriptomic changes may belong to the same circuit, since we observed coordinated transcriptomic shifts across these subtypes. Glutamate signaling exhibited one of the strongest dysregulations in epilepsy, highlighted by layer-wise transcriptional changes in multiple glutamate receptor genes and strong upregulation of genes coding for AMPA receptor auxiliary subunits. Overall, our data reveal a neuronal subtype-specific molecular phenotype of epilepsy.

OriginalsprogEngelsk
Artikelnummer5038
TidsskriftNature Communications
Vol/bind11
Udgave nummer1
Sider (fra-til)5038
ISSN2041-1723
DOI
StatusUdgivet - 7 okt. 2020

ID: 61072945