Forskning
Udskriv Udskriv
Switch language
Rigshospitalet - en del af Københavns Universitetshospital
Udgivet

Exercise and Regulation of Bone and Collagen Tissue Biology

Publikation: Bidrag til tidsskriftTidsskriftartikelFormidling

  1. Metformin-induced changes of the gut microbiota in healthy young men: results of a non-blinded, one-armed intervention study

    Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

  2. Effects of Dapagliflozin on Volume Status When Added to Renin-Angiotensin System Inhibitors

    Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

  3. Hyponatremia and metabolic bone disease in patients with epilepsy: A cross-sectional study

    Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

Vis graf over relationer

The musculoskeletal system and its connective tissue include the intramuscular connective tissue, the myotendinous junction, the tendon, the joints with their cartilage and ligaments, and the bone; they all together play a crucial role in maintaining the architecture of the skeletal muscle, ensuring force transmission, storing energy, protecting joint surface and stability, and ensuring the transfer of muscular forces into resulting limb movement. The musculoskeletal connective tissue structure is relatively stable, but mechanical loading and subsequent mechanotransduction and molecular anabolic signaling can result in some adaptation of the connective tissue, its size, its strength, and its mechanical properties, whereby it can improve its capacity by 5-20% with regular physical activity. For several of the mechanically loaded connective tissues, only limited information regarding molecular and cellular signaling pathways and their adaptation to exercise is available. In contrast to tissue responses with exercise, lack of mechanical tissue loading through inactivity or immobilization of the human body will result in a dramatic loss of connective tissue content, structure, and tolerable load within weeks, to a degree (30-40%) that mimics that of contractile skeletal musculature. This illustrates the importance of regular mechanical load in order to preserve the stabilizing role of the connective tissue for the overall function of the musculoskeletal system in both daily activity and exercise.

OriginalsprogEngelsk
BogserieProgress in Molecular Biology and Translational Science
Vol/bind135
Sider (fra-til)259-91
Antal sider33
ISSN1877-1173
DOI
StatusUdgivet - 2015

ID: 46174160