Forskning
Udskriv Udskriv
Switch language
Rigshospitalet - en del af Københavns Universitetshospital
Udgivet

Estimation of Genetic Correlation via Linkage Disequilibrium Score Regression and Genomic Restricted Maximum Likelihood

Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

DOI

  1. Complex Compound Inheritance of Lethal Lung Developmental Disorders Due to Disruption of the TBX-FGF Pathway

    Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

  2. Associations of Mitochondrial and Nuclear Mitochondrial Variants and Genes with Seven Metabolic Traits

    Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

  3. Recurrent, Activating Variants in the Receptor Tyrosine Kinase DDR2 Cause Warburg-Cinotti Syndrome

    Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

  1. A phenome-wide association and Mendelian Randomisation study of polygenic risk for depression in UK Biobank

    Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

  2. Functional gene networks reveal distinct mechanisms segregating in migraine families

    Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

  3. Letter to the editor regarding "Have you ever experienced a headache of any kind?"

    Publikation: Bidrag til tidsskriftLetterForskningpeer review

  4. The impact of low-risk genetic variants in self-limited epilepsy with centrotemporal spikes aka Rolandic epilepsy

    Publikation: Bidrag til tidsskriftKommentar/debatForskningpeer review

  5. Genetic identification of cell types underlying brain complex traits yields insights into the etiology of Parkinson’s disease

    Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

  • Guiyan Ni
  • Gerhard Moser
  • Stephan Ripke
  • Benjamin M. Neale
  • Aiden Corvin
  • James T.R. Walters
  • Kai How Farh
  • Peter A. Holmans
  • Phil Lee
  • Brendan Bulik-Sullivan
  • David A. Collier
  • Hailiang Huang
  • Tune H. Pers
  • Ingrid Agartz
  • Esben Agerbo
  • Margot Albus
  • Madeline Alexander
  • Farooq Amin
  • Silviu A. Bacanu
  • Martin Begemann
  • Richard A. Belliveau
  • Judit Bene
  • Sarah E. Bergen
  • Elizabeth Bevilacqua
  • Tim B. Bigdeli
  • Donald W. Black
  • Richard Bruggeman
  • Nancy G. Buccola
  • Randy L. Buckner
  • William Byerley
  • Wiepke Cahn
  • Guiqing Cai
  • Dominique Campion
  • Rita M. Cantor
  • Vaughan J. Carr
  • Noa Carrera
  • Stanley V. Catts
  • Kimberly D. Chambert
  • Raymond C.K. Chan
  • Ronald Y.L. Chen
  • Eric Y.H. Chen
  • Wei Cheng
  • Eric F.C. Cheung
  • Siow Ann Chong
  • Mark Hansen
  • Thomas Hansen
  • Sandra Meier
  • Line Olsen
  • Henrik B. Rasmussen
  • Thomas Werge
  • Wellcome Trust Case-Control Consortium
  • Schizophrenia Working Group of the Psychiatric Genomics Consortium
  • Psychosis Endophenotypes International Consortium
Vis graf over relationer

Genetic correlation is a key population parameter that describes the shared genetic architecture of complex traits and diseases. It can be estimated by current state-of-art methods, i.e., linkage disequilibrium score regression (LDSC) and genomic restricted maximum likelihood (GREML). The massively reduced computing burden of LDSC compared to GREML makes it an attractive tool, although the accuracy (i.e., magnitude of standard errors) of LDSC estimates has not been thoroughly studied. In simulation, we show that the accuracy of GREML is generally higher than that of LDSC. When there is genetic heterogeneity between the actual sample and reference data from which LD scores are estimated, the accuracy of LDSC decreases further. In real data analyses estimating the genetic correlation between schizophrenia (SCZ) and body mass index, we show that GREML estimates based on ∼150,000 individuals give a higher accuracy than LDSC estimates based on ∼400,000 individuals (from combined meta-data). A GREML genomic partitioning analysis reveals that the genetic correlation between SCZ and height is significantly negative for regulatory regions, which whole genome or LDSC approach has less power to detect. We conclude that LDSC estimates should be carefully interpreted as there can be uncertainty about homogeneity among combined meta-datasets. We suggest that any interesting findings from massive LDSC analysis for a large number of complex traits should be followed up, where possible, with more detailed analyses with GREML methods, even if sample sizes are lesser.

OriginalsprogEngelsk
TidsskriftAmerican Journal of Human Genetics
Vol/bind102
Udgave nummer6
Sider (fra-til)1185-1194
Antal sider10
ISSN0002-9297
DOI
StatusUdgivet - 7 jun. 2018

ID: 55287925