Forskning
Udskriv Udskriv
Switch language
Rigshospitalet - en del af Københavns Universitetshospital
Udgivet

Effect of liraglutide on expression of inflammatory genes in type 2 diabetes

Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

DOI

  1. Infants with congenital heart defects have reduced brain volumes

    Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

  2. De novo electrocardiographic abnormalities in persons living with HIV

    Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

  3. Using machine learning for predicting intensive care unit resource use during the COVID-19 pandemic in Denmark

    Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

  4. Extrarenal expression of α-klotho, the kidney related longevity gene, in Heterocephalus glaber, the long living Naked Mole Rat

    Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

  1. Altered brown fat thermoregulation and enhanced cold-induced thermogenesis in young, healthy, winter-swimming men

    Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

  2. Ceramides and phospholipids are downregulated with liraglutide treatment: results from the LiraFlame randomized controlled trial

    Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

  3. Effect of Liraglutide on Vascular Inflammation Evaluated by [64Cu]DOTATATE

    Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

Vis graf over relationer

Anti-inflammatory effects of glucagon-like peptide 1 receptor agonist (GLP-1 RA) treatment in T2D may contribute to the cardiovascular benefits observed with GLP-1 RAs in outcome studies. We investigated if the GLP-1 RA liraglutide exerts anti-inflammatory effects through modulation of inflammatory gene expression in peripheral blood mononuclear cells (PBMCs). From 54 participants of a double-blinded trial where individuals with type 2 diabetes (T2D) were randomized to liraglutide (1.8 mg/day) or placebo for 26 weeks, a sub-study was performed in which PBMCs were extracted from fresh blood at study start and at end-of-treatment. The expression of selected inflammatory genes in PBMCs were measured by quantitative real-time polymerase chain reaction (PCR). Moreover, the expression of the GLP-1 receptor (GLP1R) was examined in a subset (n = 40) of the PBMC samples. The human monocytic cell line THP-1 was used for in vitro GLP-1 exposure experiments. The expression of tumor necrosis factor-α (TNFA) (p = 0.004) and interleukin-1β (IL1B) was downregulated (p = 0.046) in the liraglutide-treated group (n = 31), and unchanged in the placebo group (n = 21, p ≥ 0.11), with no significant differences between the two groups (p ≥ 0.67). The expression of interferon-γ (IFNG) and cluster of differentiation 163 (CD163) were upregulated in both groups (p ≤ 0.006) with no differences between groups (p ≥ 0.47). C-C Motif Chemokine Ligand 5 (CCL5) was upregulated in the liraglutide-treated group (p = 0.002) and unchanged in the placebo group (p = 0.14), with no significant difference between groups (p = 0.36). Intercellular adhesion molecule 1 (ICAM1) was unchanged in both groups (p ≥ 0.43). GLP1R expression in the PBMCs was undetectable. In vitro experiments showed no effect of GLP-1 treatment on inflammatory gene expression in THP-1 cells. GLP1R expression in THP-1 cells was not detectable. In summary, we observed a discrete modulatory effect of liraglutide on the expression of inflammatory genes in PBMCs. The lack of evidence for GLP1R expression in PBMCs and THP-1 cells suggests that possible effects of liraglutide on the PBMCs' gene expression are most likely indirect. Further investigations are needed to establish the anti-inflammatory potential of GLP-1 RAs.

OriginalsprogEngelsk
Artikelnummer18522
TidsskriftScientific Reports
Vol/bind11
Udgave nummer1
Sider (fra-til)18522
ISSN2045-2322
DOI
StatusUdgivet - 17 sep. 2021

Bibliografisk note

© 2021. The Author(s).

ID: 67682457