Forskning
Udskriv Udskriv
Switch language
Rigshospitalet - en del af Københavns Universitetshospital
Udgivet

Diverse roles of extracellular calcium-sensing receptor in the central nervous system

Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

DOI

  1. Pharmacological sex hormone manipulation as a risk model for depression

    Publikation: Bidrag til tidsskriftReviewpeer review

  2. Enhanced prefrontal serotonin 2A receptor signaling in the subchronic phencyclidine mouse model of schizophrenia

    Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

  1. Detection of atrial fibrillation with implantable loop recorders in horses

    Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

  2. Familial Evaluation in Idiopathic Ventricular Fibrillation: Diagnostic Yield and Significance of J-Wave Syndromes

    Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

  3. Symptoms Preceding Sports-Related Sudden Cardiac Death in Persons Aged 1-49 Years

    Publikation: Bidrag til tidsskriftReviewpeer review

Vis graf over relationer
The G-protein-coupled calcium-sensing receptor (CaSR), upon activation by Ca(2+) or other physiologically relevant polycationic molecules, performs diverse functions in the brain. The CaSR is widely expressed in the central nervous system (CNS) and is characterized by a robust increase in its expression during postnatal brain development over adult levels throughout the CNS. Developmental increases in CaSR levels in brain correlate with myelinogenesis. Indeed, neural stem cells differentiating to the oligodendrocyte lineage exhibit the highest CaSR expression compared with those differentiating to astrocytic or neuronal lineages. In adult CNS, CaSR has broad relevance in maintaining local ionic homeostasis. CaSR shares an evolutionary relationship with the metabotropic glutamate receptor and forms heteromeric complexes with the type B-aminobutyric acid receptor subunits that affects its cell surface expression, activation, signaling, and functions. In normal physiology as well as in pathologic conditions, CaSR is activated by signals arising from mineral ions, amino acids, polyamines, glutathione, and amyloid-beta in conjunction with Ca(2+) and other divalent cationic ligands. CaSR activation regulates membrane excitability of neurons and glia and affects myelination, olfactory and gustatory signal integration, axonal and dendritic growth, and gonadotrophin-releasing hormonal-neuronal migration. Insofar as the CaSR is a clinically important therapeutic target for parathyroid disorders, development of its agonists or antagonists as therapeutics for CNS disorder could be a major breakthrough.
OriginalsprogEngelsk
TidsskriftJournal of Neuroscience Research
Vol/bind88
Udgave nummer10
Sider (fra-til)2073-82
Antal sider10
ISSN0360-4012
DOI
StatusUdgivet - 1 aug. 2010

ID: 32226296