Forskning
Udskriv Udskriv
Switch language
Rigshospitalet - en del af Københavns Universitetshospital
Udgivet

Comparing fully automated state-of-the-art cerebellum parcellation from magnetic resonance images

Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

  1. Validity and reliability of extrastriatal [11C]raclopride binding quantification in the living human brain

    Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

  2. Optimization of preprocessing strategies in Positron Emission Tomography (PET) neuroimaging: A [11C]DASB PET study

    Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

  3. Functional neuroimaging of recovery from motor conversion disorder: A case report

    Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

  4. Men with high serotonin 1B receptor binding respond to provocations with heightened amygdala reactivity

    Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

  5. Performance of five research-domain automated WM lesion segmentation methods in a multi-center MS study

    Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

  1. Optimization of preprocessing strategies in Positron Emission Tomography (PET) neuroimaging: A [11C]DASB PET study

    Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

  2. Cerebral serotonin transporter measurements with [11C]DASB: A review on acquisition and preprocessing across 21 PET centres

    Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

  3. Multi-view Consensus CNN for 3D Facial Landmark Placement

    Publikation: Bidrag til bog/antologi/rapportKonferencebidrag i proceedingsForskningpeer review

  4. Pre-intervention test-retest reliability of EEG and ERP over four recording intervals

    Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

  • Aaron Carass
  • Jennifer L Cuzzocreo
  • Shuo Han
  • Carlos R Hernandez-Castillo
  • Paul E Rasser
  • Melanie Ganz
  • Vincent Beliveau
  • Jose Dolz
  • Ismail Ben Ayed
  • Christian Desrosiers
  • Benjamin Thyreau
  • José E Romero
  • Pierrick Coupé
  • José V Manjón
  • Vladimir S Fonov
  • D Louis Collins
  • Sarah H Ying
  • Chiadi U Onyike
  • Deana Crocetti
  • Bennett A Landman
  • Stewart H Mostofsky
  • Paul M Thompson
  • Jerry L Prince
Vis graf over relationer

The human cerebellum plays an essential role in motor control, is involved in cognitive function (i.e., attention, working memory, and language), and helps to regulate emotional responses. Quantitative in-vivo assessment of the cerebellum is important in the study of several neurological diseases including cerebellar ataxia, autism, and schizophrenia. Different structural subdivisions of the cerebellum have been shown to correlate with differing pathologies. To further understand these pathologies, it is helpful to automatically parcellate the cerebellum at the highest fidelity possible. In this paper, we coordinated with colleagues around the world to evaluate automated cerebellum parcellation algorithms on two clinical cohorts showing that the cerebellum can be parcellated to a high accuracy by newer methods. We characterize these various methods at four hierarchical levels: coarse (i.e., whole cerebellum and gross structures), lobe, subdivisions of the vermis, and the lobules. Due to the number of labels, the hierarchy of labels, the number of algorithms, and the two cohorts, we have restricted our analyses to the Dice measure of overlap. Under these conditions, machine learning based methods provide a collection of strategies that are efficient and deliver parcellations of a high standard across both cohorts, surpassing previous work in the area. In conjunction with the rank-sum computation, we identified an overall winning method.

OriginalsprogEngelsk
TidsskriftNeuroImage
Vol/bind183
Sider (fra-til)150-172
Antal sider23
ISSN1053-8119
DOI
StatusUdgivet - dec. 2018

ID: 55237200