Forskning
Udskriv Udskriv
Switch language
Rigshospitalet - en del af Københavns Universitetshospital
Udgivet

CaMKII and MEK1/2 inhibition time-dependently modify inflammatory signaling in rat cerebral arteries during organ culture

Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

DOI

  1. Necrotizing enterocolitis is associated with acute brain responses in preterm pigs

    Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

  2. Early ficolin-1 is a sensitive prognostic marker for functional outcome in ischemic stroke

    Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

  3. Cellular sources of dysregulated cytokines in relapsing-remitting multiple sclerosis

    Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

  1. Vancouver Declaration II on Global Headache Patient Advocacy 2019

    Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

  2. Expression of the CGRP Family of Neuropeptides and their Receptors in the Trigeminal Ganglion

    Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

Vis graf over relationer

BACKGROUND: Cerebral ischemia induces transcriptional upregulation of inflammatory genes in the brain parenchyma and in cerebral arteries, thereby contributing to the infarct development. The present study was designed to evaluate the involvement of calcium-calmodulin-dependent protein kinase (CaMKII) II and extracellular signal-regulated kinase1/2 (ERK1/2) on inflammatory mediators in rat cerebral arteries using organ culture as a method for inducing ischemic-like vascular wall changes.

METHODS: Rat basilar arteries were cultured in serum-free medium for 0, 3, 6 or 24 hours in the presence or absence of the CaMKII inhibitor KN93 or the MEK1/2 inhibitor U0126. Protein expression of activated CaMKII, ERK1/2, and inflammatory-associated protein kinases and mediators were examined with western blot and immunohistochemistry. Caspase-3 mRNA levels in basilar arteries were studied with real-time PCR.

RESULTS: Western blot evaluation showed that organ culture induced a significant increase in phosphorylated ERK1/2 at 3, 6 and 24 hours, while CaMKII was found to be already activated in fresh non-incubated arteries and to decrease with incubation time. The addition of U0126 or KN93 decreased levels of phosphorylated c-Jun N-terminal kinase and p-p38, as evaluated by immunohistochemistry. KN93 affected the increase in caspase-3 mRNA expression only when given at the start of incubation, while U0126 had an inhibitory effect when given up to six hours later. Tumor necrosis factor receptor 1 was elevated after organ culture. This inflammatory marker was reduced by both of the two different protein kinase inhibitors.

CONCLUSIONS: The novel findings of the present study are that the cross-talk between the two protein kinases and the inhibition of CaMKII or MEK1/2 in a time-dependent manner attenuates inflammatory-associated protein kinases and mediators, suggesting that they play a role in cerebrovascular inflammation.

OriginalsprogEngelsk
TidsskriftJournal of Neuroinflammation
Vol/bind11
Sider (fra-til)90
ISSN1742-2094
DOI
StatusUdgivet - 2014

ID: 44853415