Forskning
Udskriv Udskriv
Switch language
Rigshospitalet - en del af Københavns Universitetshospital
E-pub ahead of print

Automated ictal EEG source imaging: A retrospective, blinded clinical validation study

Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

  1. Automatic continuous EEG signal analysis for diagnosis of delirium in patients with sepsis

    Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

  2. Myelin protein zero gene dose dependent axonal ion-channel dysfunction in a family with Charcot-Marie-Tooth disease

    Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

  3. Automatic detection of cortical arousals in sleep and their contribution to daytime sleepiness

    Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

  4. Steady-state visual evoked potential temporal dynamics reveal correlates of cognitive decline

    Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

  5. Diagnostic added value of electrical source imaging in presurgical evaluation of patients with epilepsy: A prospective study

    Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

  1. Biomarkers for Traumatic Brain Injury: Data Standards and Statistical Considerations

    Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

  2. Triphasic Waves Are Generated by Widespread Bilateral Cortical Networks

    Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

  3. Central and peripheral nervous system complications of COVID-19: a prospective tertiary center cohort with 3-month follow-up

    Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

  4. Global Characterisation of Coagulopathy in Isolated Traumatic Brain Injury (iTBI): A CENTER-TBI Analysis

    Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

  5. Parkinson patients have a presynaptic serotonergic deficit: A dynamic deep brain stimulation PET study

    Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

Vis graf over relationer

OBJECTIVE: EEG source imaging (ESI) is a validated tool in the multimodal workup of patients with drug resistant focal epilepsy. However, it requires special expertise and it is underutilized. To circumvent this, automated analysis pipelines have been developed and validated for the interictal discharges. In this study, we present the clinical validation of an automated ESI for ictal EEG signals.

METHODS: We have developed an automated analysis pipeline of ictal EEG activity, based on spectral analysis in source space, using an individual head model of six tissues. The analysis was done blinded to all other data. As reference standard, we used the concordance with the resected area and one-year postoperative outcome.

RESULTS: We analyzed 50 consecutive patients undergoing epilepsy surgery (34 temporal and 16 extra-temporal). Thirty patients (60%) became seizure-free. The accuracy of the automated ESI was 74% (95% confidence interval: 59.66-85.37%).

CONCLUSIONS: Automated ictal ESI has a high accuracy for localizing the seizure onset zone.

SIGNIFICANCE: Automating the ESI of the ictal EEG signals will facilitate implementation of this tool in the presurgical evaluation.

OriginalsprogEngelsk
TidsskriftClinical neurophysiology : official journal of the International Federation of Clinical Neurophysiology
ISSN1388-2457
DOI
StatusE-pub ahead of print - 27 apr. 2021

ID: 65653300