Forskning
Udskriv Udskriv
Switch language
Rigshospitalet - en del af Københavns Universitetshospital
Udgivet

A modality-adaptive method for segmenting brain tumors and organs-at-risk in radiation therapy planning

Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

DOI

  1. Optimal surface segmentation using flow lines to quantify airway abnormalities in chronic obstructive pulmonary disease

    Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

  2. Vessel-guided airway tree segmentation: A voxel classification approach

    Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

  1. The risk of late effects following pediatric and adult radiotherapy regimens in Hodgkin lymphoma

    Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

  2. Prevalence of cognitive impairment and its relation to mental health in Danish lymphoma survivors

    Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

  3. Somatostatin receptor-targeted radiopeptide therapy in treatment-refractory meningioma: Individual Patient Data Meta-analysis

    Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

  4. Effect of blood glucose and body weight on image quality in brain [F-18]FDG PET imaging

    Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

  • Mikael Agn
  • Per Munck Af Rosenschöld
  • Oula Puonti
  • Michael J Lundemann
  • Laura Mancini
  • Anastasia Papadaki
  • Steffi Thust
  • John Ashburner
  • Ian Law
  • Koen Van Leemput
Vis graf over relationer

In this paper we present a method for simultaneously segmenting brain tumors and an extensive set of organs-at-risk for radiation therapy planning of glioblastomas. The method combines a contrast-adaptive generative model for whole-brain segmentation with a new spatial regularization model of tumor shape using convolutional restricted Boltzmann machines. We demonstrate experimentally that the method is able to adapt to image acquisitions that differ substantially from any available training data, ensuring its applicability across treatment sites; that its tumor segmentation accuracy is comparable to that of the current state of the art; and that it captures most organs-at-risk sufficiently well for radiation therapy planning purposes. The proposed method may be a valuable step towards automating the delineation of brain tumors and organs-at-risk in glioblastoma patients undergoing radiation therapy.

OriginalsprogEngelsk
TidsskriftMedical Image Analysis
Vol/bind54
Sider (fra-til)220-237
Antal sider18
ISSN1361-8415
DOI
StatusUdgivet - maj 2019

ID: 56946582