Udskriv Udskriv
Switch language
Hvidovre Hospital - en del af Københavns Universitetshospital

Visualization of Nonlinear Classification Models in Neuroimaging - Signed Sensitivity Maps

Publikation: Bidrag til tidsskriftKonferenceartikelForskningpeer review

  1. Altered empathy-related resting-state functional connectivity in patients with bipolar disorder: English

    Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

  2. Database of 25 validated coil models for electric field simulations for TMS

    Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

  3. Uncovering the genetic profiles underlying the intrinsic organization of the human cerebellum

    Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

  4. Uncovering Cortical Units of Processing From Multi-Layered Connectomes

    Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

  • Peter Mondrup Rasmussen
  • Tanya Schmah
  • Kristoffer H Madsen
  • Torben E. Lund
  • Grigori Yourganov
  • Stephen C. Strother
  • Lars Kai Hansen
Vis graf over relationer
Classification models are becoming increasing popular tools in the analysis of neuroimaging data sets. Besides obtaining good prediction accuracy, a competing goal is to interpret how the classifier works. From a neuroscientific perspective, we are interested in the brain pattern reflecting the underlying neural encoding of an experiment defining multiple brain states. In this relation there is a great desire for the researcher to generate brain maps, that highlight brain locations of importance to the classifiers decisions. Based on sensitivity analysis, we develop further procedures for model visualization. Specifically we focus on the generation of summary maps of a nonlinear classifier, that reveal how the classifier works in different parts of the input domain. Each of the maps includes sign information, unlike earlier related methods. The sign information allows the researcher to assess in which direction the individual locations influence the classification. We illustrate the visualization procedure on a real data from a simple functional magnetic resonance imaging experiment.
TidsskriftBIOSIGNALS 2012
Sider (fra-til)254-263
StatusUdgivet - 2012

Mest downloadede publikationer

Ingen data tilgængelig

ID: 36847964