Forskning
Udskriv Udskriv
Switch language
Hvidovre Hospital - en del af Københavns Universitetshospital
Udgivet

Sensitivity and resolution improvement for in vivo magnetic resonance current-density imaging of the human brain

Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

DOI

  1. ActiveAxADD: Toward non-parametric and orientationally invariant axon diameter distribution mapping using PGSE

    Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

  2. Quantification of cerebral perfusion and cerebrovascular reserve using Turbo-QUASAR arterial spin labeling MRI

    Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

  3. Coil profile estimation strategies for parallel imaging with hyperpolarized 13 C MRI

    Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

Vis graf over relationer

Purpose: Magnetic resonance current-density imaging (MRCDI) combines MRI with low-intensity transcranial electrical stimulation (TES; 1-2 mA) to map current flow in the brain. However, usage of MRCDI is still hampered by low measurement sensitivity and image quality. Methods: Recently, a multigradient-echo–based MRCDI approach has been introduced that presently has the best-documented efficiency. This MRCDI approach has now been advanced in three directions and has been validated by phantom and in vivo experiments. First, the importance of optimum spoiling for brain imaging was verified. Second, the sensitivity and spatial resolution were improved by using acquisition weighting. Third, navigators were added as a quality control measure for tracking physiological noise. Combining these advancements, the optimized MRCDI method was tested by using 1 mA TES for two different injection profiles. Results: For a session duration of 4:20 min, the new MRCDI method was able to detect TES-induced magnetic fields at a sensitivity level of 84 picotesla, representing a twofold efficiency increase against our original method. A comparison between measurements and simulations based on personalized head models showed a consistent increase in the coefficient of determination of ΔR2 = 0.12 for the current-induced magnetic fields and ΔR2 = 0.22 for the current flow reconstructions. Interestingly, some of the simulations still clearly deviated from the measurements despite the strongly improved measurement quality. This highlights the utility of MRCDI to improve head models for TES simulations. Conclusion: The achieved sensitivity improvement is an important step from proof-of-concept studies toward a broader application of MRCDI in clinical and basic neuroscience research.

OriginalsprogEngelsk
Artikelnummer28944
TidsskriftMagnetic Resonance in Medicine
Vol/bind86
Udgave nummer6
Sider (fra-til)3131-3146
Antal sider16
ISSN0740-3194
DOI
StatusUdgivet - dec. 2021

Bibliografisk note

Publisher Copyright:
© 2021 International Society for Magnetic Resonance in Medicine

ID: 71681119