This is the submitted version of the following article: Bjerregaard LG, Adelborg K, Baker JL. Change in body mass index from childhood onwards and risk of adult cardiovascular disease. *Trends in Cardiovascular Medicine* 2019; Feb 5. pii: S1050-1738(19)30009-X [Epub ahead of print]. DOI:10.1016/j.tcm.2019.01.011. The final published version of the manuscript is available from: https://doi.org/10.1016/j.tcm.2019.01.011 Change in body mass index from childhood onwards and risk of adult cardiovascular disease Lise G. Bjerregaard¹, Kasper Adelborg^{2,3}, Jennifer L. Baker^{1,4} ¹ Center for Clinical Research and Disease Prevention, Bispebjerg and Frederiksberg Hospital, The Capital Region, Copenhagen, Denmark ² Department of Clinical Epidemiology, Aarhus University Hospital, Aarhus, Denmark ³ Department of Clinical Biochemistry, Aarhus University Hospital, Aarhus, Denmark ⁴ Novo Nordisk Foundation Center for Basic Metabolic Research, Section of Metabolic Genetics, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark Correspondence Dr. Lise G. Bjerregaard, Center for Clinical Research and Prevention, Bispebjerg and Frederiksberg Hospital, Nordre Fasanvej 57, 2000 Frederiksberg, Denmark. Phone: (+45) 3816 3065, fax +45 3816 3119 Email: lise.geisler.bjerregaard@regionh.dk Conflicts of interest: None Funding: This work was supported by grants from The Danish heart foundation (17-R115-A7640- 22055) and The Bispebjerg and Frederiksberg Hospital Research Fund. Word count: 5000 2 Abstract Childhood obesity adversely affect the structure and function of the cardiovascular system, but the relationship between excessive weight gain during childhood and adult cardiovascular disease (CVD) is not fully understood. This review summarizes evidence for associations of change in body mass index (BMI) from childhood onwards with CVD outcomes. We found that excessive gain in BMI from childhood onwards was consistently associated with presence of CVD risk factors, with increased risks of coronary heart disease, and there were suggestions of associations with stroke and heart failure, but a lack of evidence precludes firm conclusions. These results indicate that the risk of CVD may be traced back to child ages and highlights the importance of early strategies for preventing excessive weight gain in childhood. Keywords: Body Mass Index, Cardiovascular disease, Children, Growth, Obesity, Overweight. 3 ## Introduction The epidemic of childhood overweight and obesity constitutes a major global health problem as worldwide 50 million girls and 75 million boys were classified as obese in 2016 [1]. Of great concern is that excess weight in childhood has serious health consequences appearing at both child and adult ages [2-4]. In particular, excess childhood body mass index (BMI; kg/m²) is linked to cardiovascular disease (CVD) risk factors already during childhood [2] and there is evidence for links to adult CVD as well. Based on 17 studies, two meta-analyses demonstrated that higher BMIs in childhood are associated with significantly increased risks of coronary heart disease (CHD), covering stable angina and acute myocardial infarction in most studies [3,5]. Although earlier reviews and studies reported limited evidence supporting an association between childhood BMI and risks of stroke [3,4,6,7], we recently showed that children with an above-average BMI at each age from 7 to 13 years have increased risks of early (<55 years) but not late ischemic stroke [8]. Additionally, high childhood BMI has been positively associated with heart failure, CHD mortality and CVD mortality [9-12]. Taken together there is strong evidence that obesity at one age in childhood increases the risk of CVD in adulthood. However, from a public health perspective, early adverse BMI trajectories are important to understand as they may reveal potential intervention targets. This raises the questions of whether cardiovascular health is worsened by excessive BMI increases during childhood and if it can be improved or restored by weight loss during childhood and through to adulthood. The aim of this review is to summarize the current evidence for associations of change in BMI during childhood and from childhood to adulthood with CVD outcomes, and to discuss the potential biological mechanisms underlying these associations. # Methodology In this narrative review we include topics of excessive gain in BMI (covered by "BMI", "overweight," "obesity", "childhood growth", "trajectory", "BMI change" and "BMI increase") and CVD (defined as "coronary heart disease", "stroke", "heart failure" and "atrial fibrillation"). Studies on associations between change in BMI or weight status during childhood (<16 years) or from childhood to adulthood and any CVD outcome were included. As children age, they increase in BMI as depicted in growth charts. To standardize body size measures across age, BMI standard deviation scores (SDS) are used. Tracking in growth means that a child stays on a centile or BMI SDS over time, and deviations in BMI SDS over time equates to centile crossing. Most studies express excess gain per BMI SDS; an increase of 1 BMI SDS is equivalent to moving from the 50th to the 84.1st or from the 84.1th to the 97.7st BMI percentile of a growth chart. Childhood overweight and obesity are generally classified by excess BMI, but unlike in adults, cut-offs differ by age, sex and depend on the reference used. A standardized definition of childhood overweight and obesity does not exist. We extracted results for growth adjusted for baseline BMI, if available, rather than adjusted for attained BMI. ## BMI changes and cardiovascular risk factors Numerous studies have examined associations between changes in BMI from childhood onwards and CVD risk factors. Due to the volume of literature, only selected studies that we consider as representative of this area are described (for a list of additional studies see **Appendix S1**). BMI changes during childhood and adolescent cardiovascular risk factors Results from a contemporary prospective study in the UK showed that children who had a greater BMI SDS increase between ages 9-12 and 15-16 years had a greater odds of adverse levels of CVD risk factors at 15-16 years [13]. Similarly, obese adolescents who had excessive increases in BMI SDS across ~20 months had decreases in insulin sensitivity and higher levels of 2-hour plasma glucose, triglycerides, and decreased HDL cholesterol compared to baseline levels [14]. In contrast, a reduction in the degree of obesity led to improvement in these CVD risk factors [14]. Similarly, children in the UK who changed from overweight to normal-weight by adolescence improved their levels of CVD risk factors compared with children who developed or remained overweight [13]. Supporting the reversibility of CVD risk factors, several exercise interventions showed improvements in blood pressure, flow-mediated dilation and carotid intima media thickness (cIMT) [15]. BMI changes during childhood and adult cardiovascular risk factors Excessive increases in BMI during childhood are consistently related to CVD risk factors including elevated systolic blood pressure, higher levels of fasting insulin and lipids in young adulthood in studies from the US [16] and the Netherlands [17], and to CVD risk factors in midlife in studies from Iceland [11] and the UK [18]. The timing of when the excessive BMI gain during childhood is most harmful for CVD risk factors in young adulthood is largely unknown, although one study suggested that it was from 2-6 years rather than from birth to 2 or from 6-18 years [17]. BMI changes from childhood to adulthood and adult cardiovascular risk factors A seminal study from the 1960s on schoolchildren in Hagerstown, USA, found that individuals who developed overweight after childhood had a higher prevalence of hypertension than those who were overweight at both child and adult ages [19]. These results set forth the idea that the pattern of change in BMI from childhood rather than just the level of adult overweight may be important for CVD risk. Results from the Bogalusa Heart study support that change in BMI from child to adult ages is associated with adult CVD risk factors. It found that a below-average BMI in childhood combined with obesity in adulthood was associated with the same high level of CVD risk factors as observed for the pattern of being obese at both ages [20]. Encouragingly, remitting from overweight in childhood was associated with a level of CVD risk factors similar to the pattern of having normal weight at both time points [20]. Supporting this, a study using data from 4 prospective studies [21], showed that the development of obesity (i.e. weight gain) from childhood to adulthood is as detrimental as persistent obesity for the risk of hypertension, dyslipidemia and cIMT and that remission of obesity mitigates the adverse effects of childhood obesity on these outcomes [21]. Similarly, in a study in which child-to-adult BMI trajectories were modeled, participants in the Cardiovascular Risk in Young Finns Study who had a BMI trajectory that reached or persisted at high adult BMI levels had an increased risk of an adverse cardiometabolic profile in adulthood (24-49 years) than the normal stable group [22]. Importantly, participants who remitted from a high childhood BMI did not have increased risks of adverse levels of dyslipidemia and hypertension, however, they still had a higher risk of an increased cIMT. ## BMI changes and adult CVD events We identified eight studies on BMI changes during childhood (<16 years) and CVD events in adulthood [8,11,23-28] and six studies on BMI changes from childhood through adulthood and CVD events [7,9,10,29-31]. BMI changes during childhood and adult CVD events Four Finnish studies [23-26] and one Icelandic study [11] using data on individuals born in the 1920s-1940s consistently found that increases in BMI SDS were
positively associated with risks of CHD in adulthood (**Table 1**). They reported hazard ratios (HRs) ranging from 1.20 to 1.52 per BMI SDS change at different ages from birth to 12 years [23-26]. When examining the mean change in BMI per year from 8 to 13 years, they found the risk of CHD was about double in the highest gaining group versus the lowest [11] (Table 1). When looking even earlier in life, a combination of having a low ponderal index (kg/m³) at birth [23] or a low BMI at 2 years [26] in combination with a high BMI at age 11 yielded a greater risk of CHD than children who started life as heavy and had a low BMI at 11 years. These results indicate that those who experienced the greatest relative increase had the highest risk. The literature on BMI changes during childhood and stroke outcomes is more limited than for CHD [8,11,27]. Of the three identified studies, neither a study from Finland [27] or Iceland [11] supported an association, whereas a larger one from Denmark did [8] (Table 1). In the Danish study, a 0.5 unit increase in BMI SDS between 7 and 13 years was associated with 8-10% increased risk of early stroke (≤55 years) in men and women who had an above-average BMI at 7 years. The associations were weaker for late stroke (>55 years) [8]. Few studies investigated associations with heart failure or composite measures of CVD. A Finnish study reported a significant and positive association between excess gain in BMI from 2 to 11 years of age and heart failure, but the HR was not reported [28]. One study from Iceland found that the risk of adult fatal CVD events (diagnoses were not specified) was about the double in children with the highest versus the lowest BMI gain during childhood [11] (Table 1). BMI changes from childhood to adulthood and adult CVD events We identified two studies examining the association between BMI changes from childhood to adulthood and CHD [29,30]. In participants from 3 British birth cohorts, compared to being never overweight in childhood, adolescence and adulthood, those who increased from non-overweight in childhood to overweight from adolescence onwards or by adulthood had almost a 4-fold increased risk of CHD, whereas those who had been overweight in childhood and/or adolescence only did not have an increased risk (**Table 2**). In two large US cohorts of men and women, those with moderate or marked increases in body-adiposity trajectories from 5 to 55 years had significantly increased risks of CHD than those who had a stable pattern of a lean body shape [30] (**Table S1**). Of the two studies on BMI change and stroke, one in Swedish men found that per BMI SDS increase from 8 to 20 years the risk of any type of stroke increased by 21% [7] (Table 2). Results were similar for ischemic stroke and intracerebral hemorrhage [7]. Further, men who remitted from overweight at age 8 by age 20, had a similar risk of stroke as men who had normal-weight at both ages, whereas men who developed overweight had an increased risk (Table S1) [7]. In contrast, in a large US study, an increasing body-adiposity trajectory from child to adult ages was not associated with the risk of stroke among men, whereas it was in women (Table 2) [30]. The only study we identified on heart failure using a Swedish male cohort found that increases in BMI from 8 to 20 years were non-linearly associated with the risk of heart failure; there was a markedly increased risk in the highest quintile of BMI change [10] (Table 2). Three studies assessed the association between BMI change from childhood to adulthood and CVD morbidity [30,31] or CVD mortality [9]. Despite using different definitions of CVD, all provide evidence that a greater BMI increase is associated with increased risks of CVD (Table 2, Table S1). In a Swedish male cohort, per increase in BMI SDS from 8 to 20 years, risks of CVD mortality increased by 21% (Table 2). Men who had overweight at 8 years, but not at 20 years, had a similar risk of CVD mortality as men who had normal-weight at both ages, whereas men who developed overweight had an increased risk (Table S1) [9]. A similar pattern was found in the US study [31], although the data are challenging to interpret as confidence intervals were not provided. ## **Discussion** The main finding of this review is that children who gain excess BMI during childhood and from childhood to adulthood have increased risks of CHD, which may be mediated by CVD risk factors. Although some studies support an association with stroke, the evidence is inconsistent, and the association may differ by age at diagnosis. Evidence for an association with heart failure and composite measures of CVD morbidity and mortality is limited (only 2 and 3 studies on each), but generally support an association. For many CVD outcomes, the risks increased across the entire range of BMI change and were not limited only to children who gained enough to be classified as overweight or obese at a later timepoint [7,8,10,12]. Although the associated risks are high, as a cautionary note, an excess increase of one BMI SDS is a substantial increase and most children do not change that much [8]. Only for heart failure in men was a threshold effect identified; risks were observed only among men who gained more than 8.3 BMI units from 8 to 20 years [10]. More studies are needed to replicate these findings. The findings from this review suggest that the CVD consequences of childhood obesity may be reversible if a child normalizes his or her weight status before adulthood. Similarly, we have shown that childhood overweight at age 7 years is associated with increased risks of adult type 2 diabetes only if it continues until puberty or later ages [32]. Thus, it is possible that there are favorable BMI trajectories that can attenuate the association of excess child BMI with CVD risk. The association between excess BMI gain in childhood and adult CVD outcomes is likely complex and multifactorial in etiology. It may involve genetic, environmental, and early life determinants, some operating already in utero. Childhood overweight and obesity has appreciable short-term effects on the cardiovascular system, which may be mediated through various adipocytokines, including leptin, resistin, adiponectin, interleukin-6, and tumor necrosis factor-a [33]. Clustering of traditional CVD risk factors that accompany childhood obesity such as insulin resistance, hypercholesterolemia, diabetes, and high blood pressure may be mediators of the development of CHD, stroke, and heart failure in adulthood. Evidence suggests that excess BMI gain in childhood or the presence of higher levels of CVD risk factors inherent to obesity may promote early key steps in the development of CVD e.g. impaired endothelial function, diminished arterial distensibility, and adverse changes in cIMT as shown in this review. Moreover, excess gain in BMI during childhood may have direct adverse effects on cardiac structure and function, including larger atrial and ventricular dimensions, increased left ventricular mass, altered left ventricular geometry, and subclinical myocardial dysfunction, which in turn increases the likelihood of CVD outcomes [34]. Thus, it is plausible that these early life determinants may act alone or interact with each other, accentuating the atherosclerotic process and lowering the threshold for plaque rupture and thrombosis in adulthood. Heavy children often remain overweight or obese as adults, but the likelihood strongly depends on several factors. The risk of persistence is higher with more severe overweight and obesity in childhood, with increasing childhood age, and if it is assessed at younger adult ages [35,36]. Thus, the long-term consequences of childhood obesity on the risk of adult CVD may at least partly be associated with adult obesity. Based on studies that adjusted for adult BMI, two reviews concluded that adult BMI matters more than child BMI for CVD, and that it is the tracking of childhood obesity that accounts for the risk [4,37]. Although these types of analyses are intuitively appealing they often address a different question than expected since it is not possible to derive the independent effects of child BMI (starting level), change and adult BMI (ending level) from a single regression model [38]. These reviews were based on studies that used a parameterization of the model in which child BMI was adjusted for adult BMI. In other words, it investigates the effect of a one SDS difference in BMI between two children who attain the same BMI as adults. These models often yield regression coefficients <1, because inherently the child with the lower BMI increased more to end up at the same adult BMI level as the child who had a higher BMI. Thus these models do not show the effect of body size at one point in time, and they ignore the starting level of BMI in childhood [38]. Additionally, these models and the reviews did not examine the effects of remission from obesity. Studies included in our review demonstrate that remission from overweight during childhood or before adulthood can reduce risks of CVD, thus highlighting that BMI trajectories are suitable targets for preventive interventions. Despite high degrees of BMI tracking during childhood, large changes can occur [39]. As newer analytic models are used [22,30], it may become easier to identify life-course body-size patterns and thus better capture the long-term cumulative risk than simple cross tabulations of child and adult BMI. Although studies on childhood BMI changes and CVD risk factors are plentiful, hence precluding us from doing an exhaustive review, studies on childhood BMI changes and adult CVD events are still scarce. Additionally, many are small, and publication bias cannot be precluded. Moreover, the studies are diverse in population, calendar time, design, methods and definitions of CHD and CVD are not standardized, limiting direct comparisons. Further, few studies
included information on body size at more than one time point at child or adult ages [29,30]. As with all long-term follow-up studies, many of the cohorts were born a long time ago. Since then, many cohort studies with an abundance of information including repeated measures of body size have been initiated. Future studies should follow these contemporary cohorts for the association between early BMI gain and CVD outcomes. Potential threshold effects of excess BMI gain and differences by sex may be important research areas, as major differences between men and women exist in epidemiology, clinical presentation, pathophysiology, treatment, and outcome of CVD, but these were rarely investigated in the studies included in this review. Additionally, future studies should examine effects of childhood BMI gain on other important outcomes such as atrial fibrillation, venous thromboembolism, valvular heart diseases and peripheral artery disease. #### **Conclusions** Current evidence supports an association between excess gain in BMI during childhood and from child to adult ages and presence of CVD risk factors and increased risks of CHD. Studies also indicate that excess BMI gain from childhood onwards is associated with ischemic stroke, heart failure, and composite measures of CVD morbidity and mortality although there are few studies in these areas. Underlying mechanisms may include clustering of cardiovascular risk factors, structural changes in cardiac structure and function and tracking of BMI to adulthood. As remission from overweight may reduce CVD risks, the rationale for early strategies to prevent weight gain in childhood is compelling. #### References - 1. NCD Risk Factor Collaboration (NCD-RisC). Worldwide trends in body-mass index, underweight, overweight, and obesity from 1975 to 2016: a pooled analysis of 2416 population-based measurement studies in 128.9 million children, adolescents, and adults. The Lancet 2017;390:2627-42. - 2. Kelly AS, Barlow SE, Rao G, Inge TH, Hayman LL, Steinberger J, et al. Severe obesity in children and adolescents: identification, associated health risks, and treatment approaches: a scientific statement from the American Heart Association. Circulation 2013;128:1689-712. - 3. Llewellyn A, Simmonds M, Owen CG, Woolacott N. Childhood obesity as a predictor of morbidity in adulthood: a systematic review and meta-analysis. Obes Rev 2016;17:56-67. - 4. Park MH, Falconer C, Viner RM, Kinra S. The impact of childhood obesity on morbidity and mortality in adulthood: a systematic review. Obes Rev 2012;13:985-1000. - 5. Owen CG, Whincup PH, Orfei L, Chou QA, Rudnicka AR, Wathern AK, et al. Is body mass index before middle age related to coronary heart disease risk in later life? Evidence from observational studies. Int J Obes (Lond) 2009;33:866-77. - 6. Batty GD, Calvin CM, Brett CE, Cukic I, Deary IJ. Childhood body weight in relation to morbidity from cardiovascular disease and cancer in older adulthood: 67-year follow-up of participants in the 1947 Scottish Mental Survey. Am J Epidemiol 2015;182:775-80. - 7. Ohlsson C, Bygdell M, Sonden A, Jern C, Rosengren A, Kindblom JM. BMI increase through puberty and adolescence is associated with risk of adult stroke. Neurology 2017;89:363-69. - 8. Gjærde LK, Gamborg M, Angquist L, Truelsen TC, Sørensen TIA, Baker JL. Association of Childhood Body Mass Index and Change in Body Mass Index With First Adult Ischemic Stroke. JAMA neurology 2017;74:1312-18. - 9. Ohlsson C, Bygdell M, Sonden A, Rosengren A, Kindblom JM. Association between excessive BMI increase during puberty and risk of cardiovascular mortality in adult men: a population-based cohort study. Lancet Diabetes Endocrinol 2016;4:1017-24. - 10. Kindblom JM, Bygdell M, Sonden A, Celind J, Rosengren A, Ohlsson C. BMI change during puberty and the risk of heart failure. J Intern Med 2018;283:558-67. - 11. Imai CM, Gunnarsdottir I, Gudnason V, Aspelund T, Birgisdottir BE, Thorsdottir I, et al. Faster increase in body mass index between ages 8 and 13 is associated with risk factors for cardiovascular morbidity and mortality. Nutr Metab Cardiovasc Dis 2014;24:730-36. - 12. Baker JL, Olsen LW, Sørensen TIA. Childhood body-mass index and the risk of coronary heart disease in adulthood. N Engl J Med 2007;357:2329-37. - 13. Lawlor DA, Benfield L, Logue J, Tilling K, Howe LD, Fraser A, et al. Association between general and central adiposity in childhood, and change in these, with cardiovascular risk factors in adolescence: prospective cohort study. BMJ 2010;341:c6224. - 14. Weiss R, Shaw M, Savoye M, Caprio S. Obesity dynamics and cardiovascular risk factor stability in obese adolescents. Pediatr Diabetes 2009;10:360-7. - 15. McCrindle BW. Cardiovascular consequences of childhood obesity The Canadian journal of cardiology 2015;31:124-30. - 16. Sinaiko AR, Donahue RP, Jacobs DR, Jr., Prineas RJ. Relation of weight and rate of increase in weight during childhood and adolescence to body size, blood pressure, fasting insulin, and lipids in young adults. The Minneapolis Children's Blood Pressure Study. Circulation 1999;99:1471-6. - 17. de Kroon ML, Renders CM, van Wouwe JP, van Buuren S, Hirasing RA. The Terneuzen Birth Cohort: BMI change between 2 and 6 years is most predictive of adult cardiometabolic risk. PLoS One 2010;5:e13966. - 18. Li L, Hardy R, Kuh D, Power C. Life-course body mass index trajectories and blood pressure in mid life in two British birth cohorts: stronger associations in the later-born generation. Int J Epidemiol 2015;44:1018-26. - 19. Abraham S, Collins G, Nordsieck M. Relationship of childhood weight status to morbidity in adults. HSMHA Health Rep 1971;86:273-84. - 20. Freedman DS, Khan LK, Dietz WH, Srinivasan SR, Berenson GS. Relationship of childhood obesity to coronary heart disease risk factors in adulthood: the Bogalusa Heart Study. Pediatrics 2001;108:712-8. - 21. Juonala M, Magnussen CG, Berenson GS, Venn A, Burns TL, Sabin MA, et al. Childhood adiposity, adult adiposity, and cardiovascular risk factors. N Engl J Med 2011;365:1876-85. - 22. Buscot MJ, Thomson RJ, Juonala M, Sabin MA, Burgner DP, Lehtimaki T, et al. Distinct child-to-adult body mass index trajectories are associated with different levels of adult cardiometabolic risk. Eur Heart J 2018;39:2263-70. - 23. Eriksson JG, Forsen T, Tuomilehto J, Winter PD, Osmond C, Barker DJ. Catch-up growth in childhood and death from coronary heart disease: longitudinal study. BMJ 1999;318:427-31. - 24. Eriksson JG, Forsen T, Tuomilehto J, Osmond C, Barker DJ. Early growth and coronary heart disease in later life: longitudinal study. BMJ 2001;322:949-53. - 25. Forsen T, Osmond C, Eriksson JG, Barker DJ. Growth of girls who later develop coronary heart disease. Heart 2004;90:20-24. - 26. Barker DJ, Osmond C, Forsen TJ, Kajantie E, Eriksson JG. Trajectories of growth among children who have coronary events as adults. N Engl J Med 2005;353:1802-09. - 27. Osmond C, Kajantie E, Forsen TJ, Eriksson JG, Barker DJ. Infant growth and stroke in adult life: the Helsinki birth cohort study. Stroke 2007;38:264-70. - 28. Barker DJ, Gelow J, Thornburg K, Osmond C, Kajantie E, Eriksson JG. The early origins of chronic heart failure: impaired placental growth and initiation of insulin resistance in childhood. Eur J Heart Fail 2010;12:819-25. - 29. Park MH, Sovio U, Viner RM, Hardy RJ, Kinra S. Overweight in childhood, adolescence and adulthood and cardiovascular risk in later life: pooled analysis of three british birth cohorts. PLoS One 2013;8:e70684. - 30. Zheng Y, Song M, Manson JE, Giovannucci EL, Hu FB. Group-Based Trajectory of Body Shape From Ages 5 to 55 Years and Cardiometabolic Disease Risk in 2 US Cohorts. Am J Epidemiol 2017;186:1246-55. - 31. Morrison JA, Glueck CJ, Woo JG, Wang P. Risk factors for cardiovascular disease and type 2 diabetes retained from childhood to adulthood predict adult outcomes: the Princeton LRC Follow-up Study. Int J Pediatr Endocrinol 2012;2012:6. - 32. Bjerregaard LG, Jensen BW, Ängquist L, Osler M, Sørensen TIA, Baker JL. Change in Overweight from Childhood to Early Adulthood and Risk of Type 2 Diabetes. N Engl J Med 2018;378:1302-12. - 33. Ayer J, Charakida M, Deanfield JE, Celermajer DS. Lifetime risk: childhood obesity and cardiovascular risk. Eur Heart J 2015;36:1371-76. - 34. Koopman LP, Mertens LL. Impact of childhood obesity on cardiac structure and function. Current treatment options in cardiovascular medicine 2014;16:345. - 35. Singh AS, Mulder C, Twisk JW, van Mechelen W, Chinapaw MJ. Tracking of childhood overweight into adulthood: a systematic review of the literature. Obes Rev 2008;9:474-88. - 36. Aarestrup J, Bjerregaard LG, Gamborg M, Ängquist L, Tjønneland A, Overvad K, et al. Tracking of body mass index from 7 to 69 years of age. Int J Obesity 2016;40:1376-83. - 37. Lloyd LJ, Langley-Evans SC, McMullen S. Childhood obesity and adult cardiovascular disease risk: a systematic review. Int J Obes 2010;34:18-28. - 38. Fall CH, Victora C, Eriksson JG, Osmond C. Commentary: Disentangling the contributions of childhood and adult weight to cardiovascular disease risk. Int J Epidemiol 2016;45:1031-36. - 39. Freedman DS, Lawman HG, Galuska DA, Goodman AB, Berenson GS. Tracking and Variability in Childhood Levels of BMI: The Bogalusa Heart Study. Obesity (Silver Spring) 2018;26:1197-202. Table 1. Studies on growth during childhood and adult cardiovascular disease | Year | Study | Country | Birth | Women, | Men, N | Growth pattern | Outcome | Adjustment | Main findings (adjusted models if | |------|--------------|---------|---------|-----------|------------|--------------------|---------|------------|-----------------------------------| | | [reference] | | years | N | included/N | | | | available) | | | | | | included/ | outcomes | | | | | | | | | | N | | | | | | | | | | | outcomes | | | | | | | 1999 | Helsinki | Finland | 1924-33 | None | 3,641/310 | BMI at 11 y | Fatal | Length of | HR=1.22
(1.10-1.36) | | | Birth Cohort | | | | | adjusted for PI at | CHD | gestation | | | | [23] | | | | | birth | | | | | 2001 | Helsinki | Finland | 1934-44 | None | 4,630/357 | Change in BMI- | CHD | None | HR=1.20 (1.08-1.33) | | | Birth Cohort | | | | | SDS age 1-12 y | | | | | | [24] | | | | | | | | | | 2004 | Helsinki | Finland | 1934-44 | 4,130/ | None | Change in BMI- | CHD | 1. None | 1. HR=1.56 (1.27-1.92) | | | Birth Cohort | | | | | SDS age 3-12 y | | 2. Birth | 2. HR=1.52 (1.23-1.89) | | | [25] | | | | | | | length, | | | | | | | | | | | education | | | 2005 | Helsinki | Finland | 1934-44 | 4,130/87 | 4,630/357 | BMI-SDS at 11 y | CHD | None | Women: HR=1.35 (1.02-1.11) | |------|--------------|---------|---------|-----------|-----------|-------------------|-----------|----------------------------|--| | | Birth Cohort | | | | | adjusted for BMI- | | | Men: HR=1.14 (1.00-1.31) | | | $[26]^2$ | | | | | SDS at 2 y | | | | | | | | | | | | | | | | 2007 | Helsinki | Finland | 1934-44 | 5,950/174 | 6,489/333 | BMI-SDS at 11 y | Any | None | HR=1.04 (0.94 to 1.15) | | | Birth Cohort | | | | | adjusted for BMI- | stroke | | | | | [27] | | | | | SDS at 2 y | | | | | 2010 | Helsinki | Finland | 1934-44 | 6,370/49 | 6,975/138 | BMI-SDS at age | Chronic | None | HR>1, P=0.001 | | | Birth Cohort | | | | | 11 y adjusted for | heart | | | | | [28] | | | | | BMI-SDS at 2 y | failure | | | | 2014 | The | Iceland | 1921-35 | 945/90 | 979/202 | BMI velocity | 1. MI | Birth year, | 1. Women: p _{trend} =0.6 ^b | | | Longitudi- | | | | | from 8-13 years | | parity, birth | Men: p _{trend} =0.8 | | | nal Rey- | | | | | (mean change in | 2. Stroke | weight, | 2. Women: p _{trend} =0.6 | | | kjavik Study | | | | | kg/m² per year). | | BMI _{8y} , age at | Men: p _{trend} =0.6 | | | [11] | | | | | Comparison: | 3. Fatal | recruitment | 3. Women: HR=2.26 (1.03-4.69) ^c | | | | | | | | Highest versus | CHD | | Men: HR=1.93 (1.25-3.00) | | | | | | | | lowest tertile. | 4. Fatal | | 4. Women: HR=2.38 (1.36-4.16) | | | | | | | | | CVD | | Men: HR=1.70 (1.19-2.43) | | 2017 | Copen- | Denmark | 1930-87 | 151,955/ | 155,722/ | Change per 0.5 | 1. Early | BMI-SDS at | 1. Women: HR=1.10 (1.01-1.20) ^d | |------|-------------|---------|---------|----------|----------|----------------|------------|------------|--| | | hagen | | | 3,529 | 5,370 | BMI-SDS age 7- | IS | 7 years | Men: HR=1.08 (1.00-1.16) | | | School | | | | | 13 y | 2. Late IS | | 2. Women: HR=1.06 (1.01-1.12) | | | Health | | | | | | | | Men: HR=1.02 (0.97-1.06) | | | Records [8] | | | | | | | | | BMI: Body mass index; CHD: Coronary heart disease; CVD: Cardiovascular disease; HR: Hazard ratio with 95% confidence intervals; IS: Ischemic stroke; MI: Myocardial infarction; PI: Ponderal index; SDS: standard deviation score. ^a This study is based on the same individuals as references [24] and [25] but reports sex specific results. d ^bP-value derived from chi-square test. ^c Estimates for the highest versus lowest tertile of BMI velocity. ^d Estimates among those with a BMI SDS at 7 years >0 is reported. Estimates for change in BMI SDS were similar among those with a BMI SDS at 7 years ≤0. Table 2. Studies on growth from childhood to adulthood and adult cardiovascular disease | Year | Study | Country | Birth | Women, | Men, N | Growth pattern | Out- | Adjustment | Main findings (adjusted models if available) | |------|-------------|---------|--------|-----------|-----------|------------------------|------|-------------------|--| | | (reference) | | years | N | included/ | | come | | | | | | | | included/ | N | | | | | | | | | | N | outcomes | | | | | | | | | | outcomes | | | | | | | 2012 | Princeton | US | ~1953- | 770 |)/19 | Combinations of child | CVD | None | P _{chi-square} =0.0005 | | | Follow-up | | 1971 | | | overweight (5-20 y; | | | | | | Study [31] | | | | | CDC), and adult | | | | | | | | | | | obesity (29-48 y). | | | | | 2013 | 1946, 1958 | UK | 1946, | 5,842/ | 5,605/ | Combinations of child | CHD | Sex, year of | OR _{Child-only} =0.44 (0.20-1.89) | | | and 1970 | | 1958, | 10 |)5 | overweight (7-10 y; | | birth, child age | OR _{Adolescence-only} =1.63 (0.37-7.19) | | | British | | 1970 | | | IOTF), overweight in | | and height, birth | OR _{Adult-only} =3.83 (1.98-7.42) | | | Birth | | | | | adolescence (15-16) | | weight, SEP at | OR _{Child+Adolescence} =3.43 (0.60-19.64) | | | Cohorts | | | | | and adult obesity (34- | | birth, SEP in | OR _{Child+Adult} =1.10 (0.14-8.48) | | | [29] | | | | | 43) (reference: never | | adulthood, and | OR _{Adolescence+Adult} =3.74 (1.35-10.35) | | | | | | | | overweight). | | adult smoking | OR _{Child+Adolescence+Adult} =6.62 (1.94-22.65) | | | | | | | | | | status | | | 2016 | BMI Epide- | Sweden | 1945- | | 37,672/ | Change in BMI-SDS | CVD- | BMI-SDS at 8 | HR=1.21 (1.13-1.30) | |------|------------|--------|--------|---------|---------|--------------------------|-----------|--------------------|---| | | miology | | 61 | | 710 | age 8-20y | mortality | years, birth year, | | | | Study [9] | | | | | | | country of birth. | | | 2017 | Nurses' | US | ~1921- | 72,989/ | 31,970/ | 5-55-y-old body shape | 1. CVD | Height, race, | 1. Women: HR _{lean-moderate increase} =1.18 (1.08-1.29) ^a | | | Health | | 1946/ | 5,105 | 4,002 | trajectories (reference: | (stroke, | smoking, aspirin | HR _{lean-marked increase} =1.38 (1.25-1.52) | | | Study & | | ~1911- | | | Lean-stable). | MI) | use, menopausal | Men: HR _{lean-moderate increase} =1.16 (1.05-1.29) | | | Health | | 1946 | | | | | hormone | HR _{lean-marked increase} =1.28 (1.16-1.41) | | | Professio- | | | | | | 2. CHD | therapy, | 2. Women: HR _{lean-moderate increase} =1.21 (1.06-1.38) | | | nals | | | | | | | physical | HR _{lean-marked increase} =1.49 (1.30-1.71) | | | Follow-up | | | | | | | activity, alcohol | Men: HR _{lean-moderate increase} =1.25 (1.10-1.41) | | | Study [30] | | | | | | | consumption, | HR _{lean-marked-increase} =1.40 (1.25-1.57) | | | | | | | | | 3. Stroke | Alternate | 3. Women: HR _{lean-moderate increase} =1.16 (1.03-1.31) | | | | | | | | | | Healthy Eating | HR _{lean-marked increase} =1.29 (1.13-1.47) | | | | | | | | | | Index score, and | Men: HR _{lean-moderate increase} =0.98 (0.82-1.18) | | | | | | | | | | family history of | HR _{lean-marked increase} =1.01 (0.86-1.19) | | | | | _ | | | | | diabetes. | | | 2017 | BMI Epide- | Sweden | 1945- | 37,669/ | Change in BMI-SDS | 1. Any | BMI-SDS at 8 | 1. HR=1.21 (1.14-1.28) | |------|------------|--------|-------|-----------|-----------------------|---------|--------------------|------------------------------------| | | miology | | 61 | 918 | age 8-20y | stroke | years, birth year, | | | | Study [7] | | | (IS: 672) | | 2. IS | country of birth. | 2. HR=1.19 (1.11-1.28) | | | | | | | | | | | | 2018 | BMI Epide- | Sweden | 1945- | 37,670/ | Change in BMI age 8- | Heart | BMI-SDS at 8 | HR _{Q2} =1.21 (0.86-1.71) | | | miology | | 61 | 342 | 20y (reference: first | failure | years, birth year, | HR _{Q3} =1.51 (1.08-2.10) | | | Study [10] | | | | quartile). | | country of birth. | HR _{Q4} =2.26 (1.66-3.08) | CDC: Center for Disease Control and Prevention; HR: Hazard ratio; IOTF: International Obesity Task Force; IS: Ischemic stroke; OR: Odds ratio; SDS: standard deviation score; SEP: Socio economic position. ^a Selected results reported for groups who increased in BMI from normal weight to overweight. See also Table S1. # Supplementary material # Appendix S1. Reference list The reference list provides an overview of studies on childhood BMI changes and cardiovascular risk factors. Studies only investigating type 2 diabetes were not included. ## Studies on childhood BMI changes and cardiovascular risk factor levels in the short term: - 1. Mamun AA, Lawlor DA, O'Callaghan MJ, Williams GM, Najman JM. Effect of body mass index changes between ages 5 and 14 on blood pressure at age 14: findings from a birth cohort study. Hypertension 2005;45:1083-7. - 2. Weiss R, Shaw M, Savoye M, Caprio S. Obesity dynamics and cardiovascular risk factor stability in obese adolescents. Pediatr Diabetes 2009;10:360-7. - 3. Howe LD, Tilling K, Benfield L, Logue J, Sattar N, Ness AR, et al. Changes in ponderal index and body mass index across childhood and their associations with fat mass and cardiovascular risk factors at age 15. PLoS One 2010;5:e15186. - 4. Lawlor DA, Benfield L, Logue J, Tilling K, Howe LD, Fraser A, et al. Association between general and central adiposity in childhood, and change in these, with cardiovascular risk factors in adolescence: prospective cohort study. BMJ 2010;341:c6224. - 5. Kouda K, Fujita Y, Nakamura H, Takeuchi H, Iki M. Effect of recovery from obesity on cardiovascular risk factors among Japanese schoolchildren: the Iwata population-based follow-up study. Journal of epidemiology 2011;21:370-5. - 6. Marcus MD, Foster GD, El ghormli L, Baranowski T, Goldberg L, Jago R, et al. Shifts in BMI Category and Associated Cardiometabolic Risk: Prospective Results From HEALTHY Study. Pediatrics 2012;129:e983-e91. - 7. Boyer BP, Nelson JA, Holub SC. Childhood body mass index trajectories predicting cardiovascular risk in adolescence. J Adolesc Health 2015;56:599-605. - 8. Munthali RJ, Kagura J, Lombard Z, Norris SA. Childhood adiposity trajectories are associated with late adolescent blood pressure: birth to twenty cohort. BMC Public Health 2016;16:665. - 9. Parker ED, Sinaiko AR, Kharbanda EO, Margolis KL, Daley MF, Trower NK, et al. Change in Weight Status and Development of Hypertension. Pediatrics 2016;137:e20151662. - 10. Hanvey AN, Mensah FK, Clifford SA, Wake M. Adolescent Cardiovascular Functional and Structural Outcomes of Growth Trajectories from Infancy:
Prospective Community-Based Study. Child Obes 2017;13:154-63. # Studies on childhood BMI changes and adult cardiovascular risk factors: 11. Sinaiko AR, Donahue RP, Jacobs DR, Jr., Prineas RJ. Relation of weight and rate of increase in weight during childhood and adolescence to body size, blood pressure, fasting insulin, and lipids in young adults. The Minneapolis Children's Blood Pressure Study. Circulation 1999;99:1471-6. - 12. Srinivasan SR, Myers L, Berenson GS. Rate of change in adiposity and its relationship to concomitant changes in cardiovascular risk variables among biracial (black-white) children and young adults: The Bogalusa Heart Study. Metabolism 2001;50:299-305. - 13. Hardy R, Wadsworth ME, Langenberg C, Kuh D. Birthweight, childhood growth, and blood pressure at 43 years in a British birth cohort. Int J Epidemiol 2004;33:121-9. - 14. Barker DJ, Osmond C, Forsen TJ, Kajantie E, Eriksson JG. Trajectories of growth among children who have coronary events as adults. N Engl J Med 2005;353:1802-09. - 15. de Kroon ML, Renders CM, van Wouwe JP, van Buuren S, Hirasing RA. The Terneuzen Birth Cohort: BMI change between 2 and 6 years is most predictive of adult cardiometabolic risk. PLoS One 2010;5:e13966. - 16. Howe LD, Zimmermann E, Weiss R, Sørensen TIA. Do rapid BMI growth in childhood and early-onset obesity offer cardiometabolic protection to obese adults in mid-life? Analysis of a longitudinal cohort study of Danish men. BMJ Open 2014;4:e004827. - 17. Imai CM, Gunnarsdottir I, Gudnason V, Aspelund T, Birgisdottir BE, Thorsdottir I, et al. Faster increase in body mass index between ages 8 and 13 is associated with risk factors for cardiovascular morbidity and mortality. Nutr Metab Cardiovasc Dis 2014;24:730-36. - 18. Li L, Hardy R, Kuh D, Power C. Life-course body mass index trajectories and blood pressure in mid life in two British birth cohorts: stronger associations in the later-born generation. Int J Epidemiol 2015;44:1018-26. - 19. Hardy R, Ghosh AK, Deanfield J, Kuh D, Hughes AD. Birthweight, childhood growth and left ventricular structure at age 60-64 years in a British birth cohort study. Int J Epidemiol 2016;45:1091-102. - 20. Peneau S, Giudici KV, Gusto G, Goxe D, Lantieri O, Hercberg S, et al. Growth Trajectories of Body Mass Index during Childhood: Associated Factors and Health Outcome at Adulthood. J Pediatr 2017;186:64-71 e1. - 21. Hao G, Wang X, Treiber FA, Harshfield G, Kapuku G, Su S. Body mass index trajectories in childhood is predictive of cardiovascular risk: results from the 23-year longitudinal Georgia Stress and Heart study. Int J Obes (Lond) 2018;42:923-25. ## Studies on BMI changes from childhood to adulthood and adult cardiovascular risk factors: - 22. Abraham S, Collins G, Nordsieck M. Relationship of childhood weight status to morbidity in adults. HSMHA Health Rep 1971;86:273-84. - 23. Freedman DS, Khan LK, Dietz WH, Srinivasan SR, Berenson GS. Relationship of childhood obesity to coronary heart disease risk factors in adulthood: the Bogalusa Heart Study. Pediatrics 2001;108:712-8. - 24. Freedman DS, Dietz WH, Tang R, Mensah GA, Bond MG, Urbina EM, et al. The relation of obesity throughout life to carotid intima-media thickness in adulthood: the Bogalusa Heart Study. Int J Obes Relat Metab Disord 2004;28:159-66. - 25. Juonala M, Magnussen CG, Berenson GS, Venn A, Burns TL, Sabin MA, et al. Childhood adiposity, adult adiposity, and cardiovascular risk factors. N Engl J Med 2011;365:1876-85. - 26. Sabo RT, Lu Z, Daniels S, Sun SS. Serial childhood BMI and associations with adult hypertension and obesity: the Fels Longitudinal Study. Obesity (Silver Spring) 2012;20:1741-3. - 27. Attard SM, Herring AH, Howard AG, Gordon-Larsen P. Longitudinal trajectories of BMI and cardiovascular disease risk: the national longitudinal study of adolescent health. Obesity (Silver Spring) 2013;21:2180-8. - 28. Park MH, Sovio U, Viner RM, Hardy RJ, Kinra S. Overweight in childhood, adolescence and adulthood and cardiovascular risk in later life: pooled analysis of three british birth cohorts. PLoS One 2013;8:e70684. - 29. Suglia SF, Clark CJ, Gary-Webb TL. Adolescent obesity, change in weight status, and hypertension: racial/ethnic variations. Hypertension 2013;61:290-5. - 30. Charakida M, Khan T, Johnson W, Finer N, Woodside J, Whincup PH, et al. Lifelong patterns of BMI and cardiovascular phenotype in individuals aged 60-64 years in the 1946 British birth cohort study: an epidemiological study. The Lancet Diabetes & Endocrinology 2014;2:648-54. - 31. Araujo J, Barros H, Ramos E, Li L. Trajectories of total and central adiposity throughout adolescence and cardiometabolic factors in early adulthood. Int J Obes (Lond) 2016;40:1899-905. - 32. Wang M, Chu C, Mu J. Relationship between body mass index changes and blood pressure changes from childhood to adulthood in a general Chinese population: a 26 year cohort follow-up study. Blood pressure 2016;25:319-26. - 33. Buscot MJ, Thomson RJ, Juonala M, Sabin MA, Burgner DP, Lehtimaki T, et al. Distinct child-to-adult body mass index trajectories are associated with different levels of adult cardiometabolic risk. Eur Heart J 2018;39:2263-70. Table S1. Additional results for studies on change in weight status group from childhood to adulthood and adult cardiovascular disease | Year | Study | Country | Birth | Women | Men | Growth pattern | Outcome | Adjustment | Main findings (adjusted models if | |------|---------------|---------|--------|----------|----------|----------------------|--------------|---------------|---| | | [reference] | | years | | | | | | available) | | 2012 | Princeton | US | ~1953- | N= | 770 | Combinations of | CVD | None | Incidence proportion _{ormal-normal:=} 0.9% | | | Follow-up | | 1971 | Case | es=19 | child overweight (5- | | | Incidence proportion _{high-normal} =2.5% | | | Study [31] | | | | | 20 y; CDC), and | | | Incidence proportion _{normal-high} =4.0% | | | | | | | | adult obesity (29-48 | | | Incidence proportion _{high-high} =6.2% | | | | | | | | y). | | | | | 2016 | BMI Epide- | Sweden | 1945- | | N=37,672 | Combinations of | CVD- | Birth year, | HR _{OW-NW} =1.09 (0.68-1.74) | | | miology | | 61 | | Cases= | child overweight (8 | mortality | country of | HR _{NM-OW} =2.14 (1.56-2.96) | | | Study [9] | | | | 710 | y, CDC), and adult | after age 50 | birth. | HR _{OW-OW} =1.78 (1.13-2.78) | | | | | | | | overweight (20 y) | years | | | | | | | | | | (reference: NW-NW) | | | | | 2017 | Nurses' | US | ~1921- | N=72,989 | N=31,970 | 5-55-y-old body | 1. CVD | Height, race, | 1. Women: HR _{medium-stable} =0.97 (0.89-1.06) | | | Health Study | | 1946/ | Cases= | Cases= | shape trajectories | | smoking, | HR _{heavy-increase} =1.55 (1.40-1.71) | | | & | | ~1911- | 5,105 | 4,002 | (reference: Lean- | | regular | Men: HR _{medium-stable} =1.10 (0.98-1.23) | | | Health | | 1946 | | | stable). | | aspirin use, | HR _{heavy-increase} =1.35 (1.20-1.53) | | | Professionals | | | | | | 2. CHD | menopausal | 2. Women: HR _{medium-stable} =0.99 (0.87-1.13) | | | Follow-up | | | | | | | hormone | HR _{heavy-increase} =1.75 (1.52-2.02) | | | Study [30] | | | | | | | therapy, | Men: HR _{medium-stable} =1.17 (1.02-1.34) | | | | | | | | | | physical | HR _{heavy-increase} =1.49 (1.29-1.72) | | | | | | | | | 3. Stroke | activity, | 3. Women: HR _{medium-stable} =0.95 (0.84-1.07) | | | | | | | | | | alcohol | HR _{heavy-increase} =1.33 (1.16-1.54) | | | | | | | | | | consumption, | Men: HR _{medium-stable} =0.92 (0.75-1.12) | | | | | | | | | | Alternate | HR _{heavy-increase} =1.00 (0.80-1.25) | | | | | | | | | | Healthy | | | | | | | | | | | Eating Index | | | | | | | | | | | score, and | | | | | | | | | | | family | | | | | | | | | | history of | | |------|------------|--------|-------|-----------|---------------------|-----------|-------------|--| | | | | | | | | diabetes. | | | 2017 | BMI | Sweden | 1945- | N=37,669 | Combinations of | 1. Stroke | Birth year, | 1. HR _{OW-NW} =1.17 (0.83-1.63) | | | Epidemio- | | 61 | Cases= | child overweight (8 | | country of | HR _{NM-OW} =1.81 (1.41-2.33) | | | logy Study | | | 918 | y, CDC), and adult | | birth. | HR _{OW-OW} =1.71 (1.22-2.38) | | | [7] | | | (IS: 672) | overweight (20 y) | 2. IS | | 2. HR _{OW-NW} =1.17 (0.73-1.62) | | | | | | | (reference: NW-NW) | | | HR _{NM-OW} =1.48 (1.08-2.03) | | | | | | | | | | HR _{OW-OW} =1.78 (1.22-2.60) | | 2018 | BMI | Sweden | 1945- | N=37,670 | Combinations of | Heart | Birth year, | HR _{OW-NW} =1.12 (0.63-2.00) | | | Epidemio- | | 61 | Cases= | child overweight (8 | failure | country of | HR _{NM-OW} =3.14 (2.25-4.38) | | | logy Study | | | 342 | y, CDC), and adult | | birth. | HR _{OW-OW} =2.85 (1.83-4.45) | | | [10] | | | | overweight (20 y) | | | | | | | | | | (reference: NW-NW) | | | | BMI: Body mass index; CDC: Center for Disease Control and Prevention; CHD: Coronary heart disease; CVD: Cardiovascular disease; HR: Hazard ratio with 95% confidence intervals; ICH: Intracerebral hemorrhage; IS: Ischemic stroke; NW: Normal weight; OW: Overweight; ### References - 1. NCD Risk Factor Collaboration (NCD-RisC). Worldwide trends in body-mass index, underweight, overweight, and obesity from 1975 to 2016: a pooled analysis of 2416 population-based measurement studies in 128.9 million children, adolescents, and adults. The Lancet 2017;390:2627-42. - 2. Kelly AS, Barlow SE, Rao G, Inge TH, Hayman LL, Steinberger J, et al. Severe obesity in children and adolescents: identification, associated health risks, and treatment approaches: a scientific statement from the American Heart Association. Circulation 2013;128:1689-712. - 3. Llewellyn A, Simmonds M, Owen CG, Woolacott N. Childhood obesity as a predictor of morbidity in adulthood: a systematic review and meta-analysis. Obes Rev 2016;17:56-67. - 4. Park MH, Falconer C, Viner RM, Kinra S. The impact of childhood
obesity on morbidity and mortality in adulthood: a systematic review. Obes Rev 2012;13:985-1000. - 5. Owen CG, Whincup PH, Orfei L, Chou QA, Rudnicka AR, Wathern AK, et al. Is body mass index before middle age related to coronary heart disease risk in later life? Evidence from observational studies. Int J Obes (Lond) 2009;33:866-77. - 6. Batty GD, Calvin CM, Brett CE, Cukic I, Deary IJ. Childhood body weight in relation to morbidity from cardiovascular disease and cancer in older adulthood: 67-year follow-up of participants in the 1947 Scottish Mental Survey. Am J Epidemiol 2015;182:775-80. - 7. Ohlsson C, Bygdell M, Sonden A, Jern C, Rosengren A, Kindblom JM. BMI increase through puberty and adolescence is associated with risk of adult stroke. Neurology 2017;89:363-69. - 8. Gjærde LK, Gamborg M, Ängquist L, Truelsen TC, Sørensen TIA, Baker JL. Association of Childhood Body Mass Index and Change in Body Mass Index With First Adult Ischemic Stroke. JAMA neurology 2017;74:1312-18. - 9. Ohlsson C, Bygdell M, Sonden A, Rosengren A, Kindblom JM. Association between excessive BMI increase during puberty and risk of cardiovascular mortality in adult men: a population-based cohort study. Lancet Diabetes Endocrinol 2016;4:1017-24. - 10. Kindblom JM, Bygdell M, Sonden A, Celind J, Rosengren A, Ohlsson C. BMI change during puberty and the risk of heart failure. J Intern Med 2018;283:558-67. - 11. Imai CM, Gunnarsdottir I, Gudnason V, Aspelund T, Birgisdottir BE, Thorsdottir I, et al. Faster increase in body mass index between ages 8 and 13 is associated with risk factors for cardiovascular morbidity and mortality. Nutr Metab Cardiovasc Dis 2014;24:730-36. - 12. Baker JL, Olsen LW, Sørensen TIA. Childhood body-mass index and the risk of coronary heart disease in adulthood. N Engl J Med 2007;357:2329-37. - 13. Lawlor DA, Benfield L, Logue J, Tilling K, Howe LD, Fraser A, et al. Association between general and central adiposity in childhood, and change in these, with cardiovascular risk factors in adolescence: prospective cohort study. BMJ 2010;341:c6224. - 14. Weiss R, Shaw M, Savoye M, Caprio S. Obesity dynamics and cardiovascular risk factor stability in obese adolescents. Pediatr Diabetes 2009;10:360-7. - 15. McCrindle BW. Cardiovascular consequences of childhood obesity The Canadian journal of cardiology 2015;31:124-30. - 16. Sinaiko AR, Donahue RP, Jacobs DR, Jr., Prineas RJ. Relation of weight and rate of increase in weight during childhood and adolescence to body size, blood pressure, fasting insulin, and lipids in young adults. The Minneapolis Children's Blood Pressure Study. Circulation 1999;99:1471-6. - 17. de Kroon ML, Renders CM, van Wouwe JP, van Buuren S, Hirasing RA. The Terneuzen Birth Cohort: BMI change between 2 and 6 years is most predictive of adult cardiometabolic risk. PLoS One 2010;5:e13966. - 18. Li L, Hardy R, Kuh D, Power C. Life-course body mass index trajectories and blood pressure in mid life in two British birth cohorts: stronger associations in the later-born generation. Int J Epidemiol 2015;44:1018-26. - 19. Abraham S, Collins G, Nordsieck M. Relationship of childhood weight status to morbidity in adults. HSMHA Health Rep 1971;86:273-84. - 20. Freedman DS, Khan LK, Dietz WH, Srinivasan SR, Berenson GS. Relationship of childhood obesity to coronary heart disease risk factors in adulthood: the Bogalusa Heart Study. Pediatrics 2001;108:712-8. - 21. Juonala M, Magnussen CG, Berenson GS, Venn A, Burns TL, Sabin MA, et al. Childhood adiposity, adult adiposity, and cardiovascular risk factors. N Engl J Med 2011;365:1876-85. - 22. Buscot MJ, Thomson RJ, Juonala M, Sabin MA, Burgner DP, Lehtimaki T, et al. Distinct child-to-adult body mass index trajectories are associated with different levels of adult cardiometabolic risk. Eur Heart J 2018;39:2263-70. - 23. Eriksson JG, Forsen T, Tuomilehto J, Winter PD, Osmond C, Barker DJ. Catch-up growth in childhood and death from coronary heart disease: longitudinal study. BMJ 1999;318:427-31. - 24. Eriksson JG, Forsen T, Tuomilehto J, Osmond C, Barker DJ. Early growth and coronary heart disease in later life: longitudinal study. BMJ 2001;322:949-53. - 25. Forsen T, Osmond C, Eriksson JG, Barker DJ. Growth of girls who later develop coronary heart disease. Heart 2004;90:20-24. - 26. Barker DJ, Osmond C, Forsen TJ, Kajantie E, Eriksson JG. Trajectories of growth among children who have coronary events as adults. N Engl J Med 2005;353:1802-09. - 27. Osmond C, Kajantie E, Forsen TJ, Eriksson JG, Barker DJ. Infant growth and stroke in adult life: the Helsinki birth cohort study. Stroke 2007;38:264-70. - 28. Barker DJ, Gelow J, Thornburg K, Osmond C, Kajantie E, Eriksson JG. The early origins of chronic heart failure: impaired placental growth and initiation of insulin resistance in childhood. Eur J Heart Fail 2010;12:819-25. - 29. Park MH, Sovio U, Viner RM, Hardy RJ, Kinra S. Overweight in childhood, adolescence and adulthood and cardiovascular risk in later life: pooled analysis of three british birth cohorts. PLoS One 2013;8:e70684. - 30. Zheng Y, Song M, Manson JE, Giovannucci EL, Hu FB. Group-Based Trajectory of Body Shape From Ages 5 to 55 Years and Cardiometabolic Disease Risk in 2 US Cohorts. Am J Epidemiol 2017;186:1246-55. - 31. Morrison JA, Glueck CJ, Woo JG, Wang P. Risk factors for cardiovascular disease and type 2 diabetes retained from childhood to adulthood predict adult outcomes: the Princeton LRC Follow-up Study. Int J Pediatr Endocrinol 2012;2012:6. - 32. Bjerregaard LG, Jensen BW, Ängquist L, Osler M, Sørensen TIA, Baker JL. Change in Overweight from Childhood to Early Adulthood and Risk of Type 2 Diabetes. N Engl J Med 2018;378:1302-12. - 33. Ayer J, Charakida M, Deanfield JE, Celermajer DS. Lifetime risk: childhood obesity and cardiovascular risk. Eur Heart J 2015;36:1371-76. - 34. Koopman LP, Mertens LL. Impact of childhood obesity on cardiac structure and function. Current treatment options in cardiovascular medicine 2014;16:345. - 35. Singh AS, Mulder C, Twisk JW, van Mechelen W, Chinapaw MJ. Tracking of childhood overweight into adulthood: a systematic review of the literature. Obes Rev 2008;9:474-88. - 36. Aarestrup J, Bjerregaard LG, Gamborg M, Ängquist L, Tjønneland A, Overvad K, et al. Tracking of body mass index from 7 to 69 years of age. Int J Obesity 2016;40:1376-83. - 37. Lloyd LJ, Langley-Evans SC, McMullen S. Childhood obesity and adult cardiovascular disease risk: a systematic review. Int J Obes 2010;34:18-28. - 38. Fall CH, Victora C, Eriksson JG, Osmond C. Commentary: Disentangling the contributions of childhood and adult weight to cardiovascular disease risk. Int J Epidemiol 2016;45:1031-36. 39. Freedman DS, Lawman HG, Galuska DA, Goodman AB, Berenson GS. Tracking and Variability in Childhood Levels of BMI: The Bogalusa Heart Study. Obesity (Silver Spring) 2018;26:1197-202.