Understanding the genetic complexity of puberty timing across the allele frequency spectrum

Katherine A Kentistou, Lena R Kaisinger, Stasa Stankovic, Marc Vaudel, Edson M de Oliveira, Andrea Messina, Robin G Walters, Xiaoxi Liu, Alexander S Busch, Hannes Helgason, Deborah J Thompson, Federico Santon, Konstantin M Petricek, Yassine Zouaghi, Isabel Huang-Doran, Daniel F Gudbjartsson, Eirik Bratland, Kuang Lin, Eugene J Gardner, Yajie ZhaoRaina Jia, Chikashi Terao, Margie Riggan, Manjeet K Bolla, Mojgan Yazdanpanah, Nahid Yazdanpanah, Jonath P Bradfield, Linda Broer, Archie Campbell, Daniel I Chasman, Diana L Cousminer, Nora Franceschini, Lude H Franke, Giorgia Girotto, Chunyan He, Marjo-Riitta Järvelin, Peter K Joshi, Yoichiro Kamatani, Robert Karlsson, Jian'an Luan, Kathryn L Lunetta, Reedik Mägi, Massimo Mangino, Sarah E Medland, Christa Meisinger, Raymond Noordam, Stig E Bojesen, Sisse R Ostrowski, Ole B Pedersen, Anders Juul, ABCTB Investigators

Abstract

Pubertal timing varies considerably and has been associated with a range of health outcomes in later life. To elucidate the underlying biological mechanisms, we performed multi-ancestry genetic analyses in ~800,000 women, identifying 1,080 independent signals associated with age at menarche. Collectively these loci explained 11% of the trait variance in an independent sample, with women at the top and bottom 1% of polygenic risk exhibiting a ~11 and ~14-fold higher risk of delayed and precocious pubertal development, respectively. These common variant analyses were supported by exome sequence analysis of ~220,000 women, identifying several genes, including rare loss of function variants in ZNF483 which abolished the impact of polygenic risk. Next, we implicated 660 genes in pubertal development using a combination of in silico variant-to-gene mapping approaches and integration with dynamic gene expression data from mouse embryonic GnRH neurons. This included an uncharacterized G-protein coupled receptor GPR83, which we demonstrate amplifies signaling of MC3R, a key sensor of nutritional status. Finally, we identified several genes, including ovary-expressed genes involved in DNA damage response that co-localize with signals associated with menopause timing, leading us to hypothesize that the ovarian reserve might signal centrally to trigger puberty. Collectively these findings extend our understanding of the biological complexity of puberty timing and highlight body size dependent and independent mechanisms that potentially link reproductive timing to later life disease.

Original languageEnglish
DOIs
Publication statusPublished - 20 Jun 2023
SeriesmedRxiv : the preprint server for health sciences

Fingerprint

Dive into the research topics of 'Understanding the genetic complexity of puberty timing across the allele frequency spectrum'. Together they form a unique fingerprint.

Cite this