Ultra-high-fidelity virtual reality mastoidectomy simulation training: a randomized, controlled trial

Andreas Frithioff, Martin Frendø, Peter Trier Mikkelsen, Mads Sølvsten Sørensen, Steven Arild Wuyts Andersen

27 Citations (Scopus)

Abstract

PURPOSE: Ultra-high-fidelity (UHF) graphics in virtual reality (VR) simulation might improve surgical skill acquisition in temporal bone training. This study aims to compare UHF VR simulation training with conventional, screen-based VR simulation training (cVR) with respect to performance and cognitive load (CL).

METHODS: In a randomized trial with a cross-over design, 24 students completed a total of four mastoidectomies in a VR temporal bone surgical simulator: two performances under UHF conditions using a digital microscope and two performances under conventional conditions using screen-based VR simulation. Performances were assessed by two blinded raters using an established assessment tool. In addition, CL was estimated as the relative change in secondary-task reaction time during simulation when compared with individual baseline measurements. Data were analyzed using linear mixed model analysis for repeated measurements.

RESULTS: The mean final-product performance score was significantly lower in UHF VR simulation compared to cVR simulation [mean difference 1.0 points out of 17 points, 95% CI (0.2-1.7), p = 0.02]. The most important factor for performance during UHF simulation was the ability to achieve stereovision (mean difference = 3.4 points, p < 0.001). Under the UHF VR condition, CL was significantly higher than during cVR (28% vs. 18%, respectively, p < 0.001).

CONCLUSION: UHF graphics in VR simulation training reduced performance and induced a higher CL in novices than conventional, screen-based VR simulation training. Consequently, UHF VR simulation training should be preceded by cVR training and might be better suited for the training of intermediates or experienced surgeons.

Keywords

  • Cadaveric dissection
  • Mastoidectomy
  • Simulation-based training
  • Surgical education
  • Temporal bone surgery

Fingerprint

Dive into the research topics of 'Ultra-high-fidelity virtual reality mastoidectomy simulation training: a randomized, controlled trial'. Together they form a unique fingerprint.

Cite this