Tumors initiated by constitutive Cdk2 activation exhibit transforming growth factor beta resistance and acquire paracrine mitogenic stimulation during progression

P. Corsino, B. Davis, M. Law, A. Chytil, E. Forrester, Peter Henrik Nørgaard, N. Teoh, B. Law

21 Citations (Scopus)

Abstract

Cyclin D1/cyclin-dependent kinase 2 (Cdk2) complexes are present at high frequency in human breast cancer cell lines, but the significance of this observation is unknown. This report shows that expression of a cyclin D1-Cdk2 fusion protein under the control of the mouse mammary tumor virus (MMITV) promoter results in mammary gland hyperplasia and fibrosis, and mammary tumors. Cell lines isolated from MMTV-cyclin D1-Cdk2 (MMTV-D1K2) tumors exhibit Rb and p130 hyperphosphorylation and up-regulation of the protein products of E2F-dependent genes. These results suggest that cyclin D1/Cdk2 complexes may mediate some of the transforming effects that result from cyclin D1 overexpression in human breast cancers. MMTV-DIK2 cancer cells express the hepatocyte growth factor (HGF) receptor, c-Met. MMTV-D1K2 cancer cells also secrete transforming growth factor beta (TGF beta), but are relatively resistant to TGF beta antiproliferative effects. Fibroblasts derived from MMTV-DIK2 tumors secrete factors that stimulate the proliferation of MMTV-D1K2 cancer cells, stimulate c-Met tyrosine phosphorylation, and stimulate the phosphorylation of the downstream signaling intermediates p70(s6k) and Akt on activating sites. Together, these results suggest that deregulation of the Cdk/Rb/E2F axis reprograms mammary epithelial cells to initiate a paracrine loop with tumor-associated fibroblasts involving TGF beta and HGF, resulting in desmoplasia. The MMTV-DIK2 mice should provide a useful model system for the development of therapeutic approaches to block the stromal desmoplastic reaction that likely plays an important role in the progression of multiple types of human tumors
Translated title of the contributionTumors initiated by constitutive Cdk2 activation exhibit transforming growth factor beta resistance and acquire paracrine mitogenic stimulation during progression
Original languageEnglish
JournalCancer Research
Volume67
Issue number7
Pages (from-to)3135-3144
Number of pages10
ISSN0008-5472
Publication statusPublished - 2007

Cite this