Tuft Cells and Their Role in Intestinal Diseases

Sebastian Kjærgaard Hendel, Lauge Kellermann, Annika Hausmann, Niels Bindslev, Kim Bak Jensen, Ole Haagen Nielsen

Abstract

The interests in intestinal epithelial tuft cells, their basic physiology, involvement in immune responses and relevance for gut diseases, have increased dramatically over the last fifteen years. A key discovery in 2016 of their close connection to helminthic and protozoan infection has further spurred the exploration of these rare chemosensory epithelial cells. Although very sparse in number, tuft cells are now known as important sentinels in the gastrointestinal tract as they monitor intestinal content using succinate as well as sweet and bitter taste receptors. Upon stimulation, tuft cells secrete a broad palette of effector molecules, including interleukin-25, prostaglandin E2 and D2, cysteinyl leukotriene C4, acetylcholine, thymic stromal lymphopoietin, and β-endorphins, some of which with immunomodulatory functions. Tuft cells have proven indispensable in anti-helminthic and anti-protozoan immunity. Most studies on tuft cells are based on murine experiments using double cortin-like kinase 1 (DCLK1) as a marker, while human intestinal tuft cells can be identified by their expression of the cyclooxygenase-1 enzyme. So far, only few studies have examined tuft cells in humans and their relation to gut disease. Here, we present an updated view on intestinal epithelial tuft cells, their physiology, immunological hub function, and their involvement in human disease. We close with a discussion on how tuft cells may have potential therapeutic value in a clinical context.

Original languageEnglish
Article number822867
JournalFrontiers in Immunology
Volume13
Pages (from-to)822867
ISSN1664-3224
DOIs
Publication statusPublished - 2022

Keywords

  • Animals
  • Doublecortin-Like Kinases
  • Epithelial Cells/pathology
  • Helminths
  • Humans
  • Intestinal Diseases/metabolism
  • Intestinal Mucosa/pathology
  • Intracellular Signaling Peptides and Proteins/metabolism
  • Mice
  • Protein Serine-Threonine Kinases

Fingerprint

Dive into the research topics of 'Tuft Cells and Their Role in Intestinal Diseases'. Together they form a unique fingerprint.

Cite this