Tolbutamide stimulates exocytosis of glucagon by inhibition of a mitochondrial-like ATP-sensitive K+ (KATP) conductance in rat pancreatic A-cells

M Høy, H L Olsen, K Bokvist, K Buschard, S Barg, P Rorsman, J Gromada

Abstract

1. Capacitance measurements were used to examine the effects of the sulphonylurea tolbutamide on Ca2+-dependent exocytosis in isolated glucagon-secreting rat pancreatic A-cells. 2. When applied extracellularly, tolbutamide stimulated depolarization-evoked exocytosis 4.2-fold without affecting the whole-cell Ca2+ current. The concentration dependence of the stimulatory action was determined by intracellular application through the recording pipette. Tolbutamide produced a concentration-dependent increase in cell capacitance. Half-maximal stimulation was observed at 33 microM and the maximum stimulation corresponded to a 3.4-fold enhancement of exocytosis. 3. The stimulatory action of tolbutamide was dependent on protein kinase C activity. The action of tolbutamide was mimicked by the general K+ channel blockers TEA (10 mM) and quinine (10 microM). A similar stimulation was elicited by 5-hydroxydecanoate (5-HD; 10 microM), an inhibitor of mitochondrial ATP-sensitive K+ (KATP) channels. 4. Tolbutamide-stimulated, but not TEA-induced, exocytosis was antagonized by the K+ channel openers diazoxide, pinacidil and cromakalim. 5. Dissipating the transgranular K+ gradient with nigericin and valinomycin inhibited tolbutamide- and Ca2+-evoked exocytosis. Furthermore, tolbutamide- and Ca2+-induced exocytosis were abolished by the H+ ionophore FCCP or by arresting the vacuolar (V-type) H+-ATPase with bafilomycin A1 or DCCD. Finally, ammonium chloride stimulated exocytosis to a similar extent to that obtained with tolbutamide. 6. We propose that during granular maturation, a granular V-type H+-ATPase pumps H+ into the secretory granule leading to the generation of a pH gradient across the granular membrane and the development of a positive voltage inside the granules. The pumping of H+ is facilitated by the concomitant exit of K+ through granular K+ channels with pharmacological properties similar to those of mitochondrial KATP channels. Release of granules that have been primed is then facilitated by the addition of K+ channel blockers. The resulting increase in membrane potential promotes exocytosis by unknown mechanisms, possibly involving granular alkalinization.

Original languageEnglish
JournalThe Journal of physiology
Volume527 Pt 1
Issue numberPt 1
Pages (from-to)109-20
Number of pages12
ISSN0022-3751
DOIs
Publication statusPublished - 15 Aug 2000
Externally publishedYes

Keywords

  • Animals
  • Calcium/metabolism
  • Cell Culture Techniques
  • Electric Conductivity
  • Exocytosis/drug effects
  • Glucagon/metabolism
  • Hydrogen-Ion Concentration/drug effects
  • Ionophores/pharmacology
  • Islets of Langerhans/drug effects
  • Male
  • Membrane Potentials
  • Membrane Proteins/antagonists & inhibitors
  • Models, Biological
  • Pituitary Gland/cytology
  • Potassium/metabolism
  • Potassium Channels
  • Protein Kinase C/antagonists & inhibitors
  • Proton-Translocating ATPases/antagonists & inhibitors
  • Rats
  • Rats, Inbred Lew
  • Rats, Sprague-Dawley
  • Sulfonylurea Compounds/pharmacology
  • Tolbutamide/pharmacology
  • Vacuolar Proton-Translocating ATPases

Fingerprint

Dive into the research topics of 'Tolbutamide stimulates exocytosis of glucagon by inhibition of a mitochondrial-like ATP-sensitive K+ (KATP) conductance in rat pancreatic A-cells'. Together they form a unique fingerprint.

Cite this