TY - JOUR
T1 - Three-dimensional measurements of scapular kinematics
T2 - Interrater reliability and validation of a skin marker-based model against an intracortical pin model
AU - Malmberg, Catarina
AU - Jensen, Stefan E
AU - Michaud, Benjamin
AU - Andreasen, Kristine R
AU - Hölmich, Per
AU - Barfod, Kristoffer W
AU - Bencke, Jesper
N1 - © 2024 The Authors.
PY - 2024/4/30
Y1 - 2024/4/30
N2 - A skin marker-based motion capture model providing measures of scapular rotations was recently developed. The aim of this study was to investigate the concurrent validity and the interrater reliability of the model. Shoulder range of motion (RoM) and activities of daily living (ADL) were tested in healthy volunteers with reflective markers on the scapula and thorax. To investigate the validity, the model was compared to simultaneous data collection from markers on a scapular intracortical pin. The interrater reliability was tested by comparing the skin marker-based protocol performed by two investigators. The mean root mean square error (RMSE) and the intraclass correlation coefficient (ICC(2,1)) were calculated to determine the validity and the interrater reliability, respectively. Eight subjects were included in the validity test: female/male = 2/6, mean (SD) age 35.0 (3.0) and BMI 23.4 (3.3). The mean RMSE of all scapular rotations ranged 2.3-6.7° during shoulder RoM and 2.4-7.6° during ADL. The highest errors were seen during sagittal and scapular plane flexions, hair combing and eating. The reliability test included twenty subjects: female/male = 8/12, mean (SD) age 31.4 (4.9) and BMI 22.9 (1.7). The ICC(2,1) for measuring protraction ranged 0.07-0.60 during RoM and 0.27-0.69 for ADL, for upward rotation the corresponding ICC(2,1) ranged 0.01-0.64 and 0.38-0.60, and anterior tilt 0.25-0.83 and 0.25-0.62. The validity and interrater reliability of the model are task dependent, and interpretation should be made with caution. The model provides quantitative measurements for objective assessment of scapular movements and can potentially supplement the clinical examination in certain motion tasks.
AB - A skin marker-based motion capture model providing measures of scapular rotations was recently developed. The aim of this study was to investigate the concurrent validity and the interrater reliability of the model. Shoulder range of motion (RoM) and activities of daily living (ADL) were tested in healthy volunteers with reflective markers on the scapula and thorax. To investigate the validity, the model was compared to simultaneous data collection from markers on a scapular intracortical pin. The interrater reliability was tested by comparing the skin marker-based protocol performed by two investigators. The mean root mean square error (RMSE) and the intraclass correlation coefficient (ICC(2,1)) were calculated to determine the validity and the interrater reliability, respectively. Eight subjects were included in the validity test: female/male = 2/6, mean (SD) age 35.0 (3.0) and BMI 23.4 (3.3). The mean RMSE of all scapular rotations ranged 2.3-6.7° during shoulder RoM and 2.4-7.6° during ADL. The highest errors were seen during sagittal and scapular plane flexions, hair combing and eating. The reliability test included twenty subjects: female/male = 8/12, mean (SD) age 31.4 (4.9) and BMI 22.9 (1.7). The ICC(2,1) for measuring protraction ranged 0.07-0.60 during RoM and 0.27-0.69 for ADL, for upward rotation the corresponding ICC(2,1) ranged 0.01-0.64 and 0.38-0.60, and anterior tilt 0.25-0.83 and 0.25-0.62. The validity and interrater reliability of the model are task dependent, and interpretation should be made with caution. The model provides quantitative measurements for objective assessment of scapular movements and can potentially supplement the clinical examination in certain motion tasks.
KW - Motion analysis
KW - Motion capture
KW - Reliability
KW - Scapular kinematics
KW - Validity
UR - http://www.scopus.com/inward/record.url?scp=85190121312&partnerID=8YFLogxK
U2 - 10.1016/j.heliyon.2024.e29414
DO - 10.1016/j.heliyon.2024.e29414
M3 - Journal article
C2 - 38644878
SN - 2405-8440
VL - 10
SP - e29414
JO - Heliyon
JF - Heliyon
IS - 8
M1 - e29414
ER -