Research
Print page Print page
Switch language
The Capital Region of Denmark - a part of Copenhagen University Hospital
Published

The Pathogenesis of Ankylosing Spondylitis: an Update

Research output: Contribution to journalReviewResearchpeer-review

  1. Disentangling the Emerging Evidence around Atypical Fractures

    Research output: Contribution to journalJournal articleResearchpeer-review

  2. Role of ultrasound in managing rheumatoid arthritis

    Research output: Contribution to journalJournal articleResearchpeer-review

  3. Ultrasonography and magnetic resonance imaging in early rheumatoid arthritis: recent advances.

    Research output: Contribution to journalJournal articleResearchpeer-review

View graph of relations

PURPOSE OF REVIEW: Ankylosing spondyloarthritis (AS) is a chronic inflammatory disease that involves the axial joints and entheses. Extra-spinal manifestations such as anterior uveitis, psoriasis, and colitis also occur frequently. This review on the pathogenesis of AS includes an update on the recent discoveries within the field.

RECENT FINDINGS: HLA-B*27 is still considered of major importance in the pathogenesis, and it has recently been shown to profoundly affect the gut microbiome and its metabolites and the handling of bacteria during infection. Biochemical and biophysical properties of HLA-B*27 influence its ability to misfold, to induce an endoplasmic reticulum stress response, and to promote autophagy/unfolded protein responses (UPR). HLA-B*27 free heavy chains may induce inflammation through T cells, NK cells, and myeloid cells. Induction of UPR genes results in release of tumor necrosis factor-α (TNF-α), interleukin-17 (IL-17), IL-23, and interferon-γ and increase in T helper (Th) 17 cells. Several other HLA-B and non-B molecules have been associated with AS, although their role in the pathogenesis is unknown. Genotypes of endoplasmic reticulum aminopeptidases (ERAP) 1 and 2 have been associated with alterations in the antigenic pool expressed by HLA-B*27 molecules. In the gut, innate immune cells type 3 (ILC3) influence T cell expression of IL-17 and IL-22. Gamma-delta (γ/δ) T cells are induced by IL-23 to produce IL-17. IL-7 induces mucosa-associated invariant T (MAIT) cells to produce IL-17. Besides the microbiome, zonulin may be important through its effects on the permeability of tight junctions in the intestinal epithelial barrier.

Original languageEnglish
JournalCurrent Rheumatology Reports
Volume21
Issue number10
Pages (from-to)58
ISSN1534-6307
DOIs
Publication statusPublished - 11 Nov 2019

Bibliographical note

COPECARE

ID: 59365189