Research
Print page Print page
Switch language
The Capital Region of Denmark - a part of Copenhagen University Hospital
Published

The influence of age and aerobic fitness: effects on mitochondrial respiration in skeletal muscle

Research output: Contribution to journalJournal articleResearchpeer-review

  1. Chromogranin A in cardiovascular endocrinology

    Research output: Contribution to journalEditorialResearchpeer-review

  2. Did you know-why does maximal oxygen uptake increase in humans following endurance exercise training?

    Research output: Contribution to journalEditorialResearchpeer-review

  1. Effects of endogenous GIP in patients with type 2 diabetes

    Research output: Contribution to journalJournal articleResearchpeer-review

  2. The training induced increase in whole-body peak fat oxidation rate may be attenuated with aging

    Research output: Contribution to journalJournal articleResearchpeer-review

  3. Mitochondrial dysfunction in adults after out-of-hospital cardiac arrest

    Research output: Contribution to journalJournal articleResearchpeer-review

View graph of relations

AIM: Mitochondrial function has previously been studied in ageing, but never in humans matched for maximal oxygen uptake ((V)·O2max). Furthermore, the influence of ageing on mitochondrial substrate sensitivity is not known.

METHODS: Skeletal muscle mitochondrial respiratory capacity and mitochondrial substrate sensitivity were measured by respirometry in young (23 ± 3 years) and middle-aged (53 ± 3 years) male subjects with similar (V)·O2max. Protocols for respirometry included titration of substrates for complex I (glutamate), complex II (succinate) and both (octanoyl carnitine) for calculation of substrate sensitivity (C(50) ). Myosin heavy chain (MHC) isoforms, citrate synthase (CS) and β-hydroxy-acyl-CoA-dehydrogenase (HAD) activity, mitochondrial DNA (mtDNA) content, protein levels of complexes I-V and antioxidant defence system [manganese superoxide dismutase (MnSOD)] were measured.

RESULTS: No differences were found in maximal mitochondrial respiration or C(50) with glutamate (2.0 ± 0.3 and 1.8 ± 0.3 mm), succinate (3.7 ± 0.2 and 3.8 ± 0.4 mm) or octanoyl carnitine (47 ± 8 and 56 ± 7 μm) in young and middle-aged subjects respectively. Normalizing mitochondrial respiration to mtDNA young subjects had a higher (P < 0.05) respiratory capacity per mitochondrion compared to middle-aged subjects. HAD activity and mtDNA per mg tissue were higher in middle-aged compared to young subjects. Middle-aged had a higher MHC I isoform and a lower MHC IIX isoform content compared to young subjects.

CONCLUSION: Mitochondrial substrate sensitivity is not affected by ageing. When young and middle-aged men are carefully matched for (V)·O2max, mitochondrial respiratory capacity is also similar. However, per mitochondrion respiratory capacity was lower in middle-aged compared to young subjects. Thus, when matched for (V)·O2max, middle-aged seem to require a higher mitochondrial content than young subjects.

Original languageEnglish
JournalActa physiologica (Oxford, England)
Volume205
Issue number3
Pages (from-to)423-32
Number of pages10
ISSN1748-1708
DOIs
Publication statusPublished - Jul 2012

    Research areas

  • 3-Hydroxyacyl CoA Dehydrogenases, Adult, Aging, Biopsy, DNA, Mitochondrial, Electron Transport, Exercise, Humans, Male, Middle Aged, Mitochondria, Muscle, Muscle, Skeletal, Myosin Heavy Chains, Oxygen Consumption, Physical Fitness, Comparative Study, Journal Article, Research Support, Non-U.S. Gov't

ID: 51616000