Research
Print page Print page
Switch language
The Capital Region of Denmark - a part of Copenhagen University Hospital
Published

Satellite cell response to erythropoietin treatment and endurance training in healthy young men

Research output: Contribution to journalJournal articleResearchpeer-review

DOI

  1. The impact of loading, unloading, ageing and injury on the human tendon

    Research output: Contribution to journalJournal articleResearchpeer-review

  2. Blood-brain barrier permeability measured using dynamic contrast-enhanced magnetic resonance imaging: a validation study

    Research output: Contribution to journalJournal articleResearchpeer-review

  3. Human brain blood flow and metabolism during isocapnic hyperoxia: the role of reactive oxygen species

    Research output: Contribution to journalJournal articleResearchpeer-review

  4. Lower body negative pressure to safely reduce intracranial pressure

    Research output: Contribution to journalJournal articleResearchpeer-review

  1. Early development of tendinopathy in humans: Sequence of pathological changes in structure and tissue turnover signaling

    Research output: Contribution to journalJournal articleResearchpeer-review

  2. Molecular indicators of denervation in aging human skeletal muscle

    Research output: Contribution to journalJournal articleResearchpeer-review

  3. Muscle-strain injury exudate favors acute tissue healing and prolonged connective tissue formation in humans

    Research output: Contribution to journalJournal articleResearchpeer-review

  4. An anti-inflammatory phenotype in visceral adipose tissue of old lean mice, augmented by exercise

    Research output: Contribution to journalJournal articleResearchpeer-review

View graph of relations

KEY POINT: Erythropoietin (Epo) treatment may induce myogenic differentiation factor (MyoD) expression and prevent apoptosis in satellite cells (SCs) in murine and in vitro models. Endurance training stimulates SC proliferation in vivo in murine and human skeletal muscle. In the present study, we show, in human skeletal muscle, that treatment with an Epo-stimulating agent (darbepoetin-α) in vivo increases the content of MyoD(+) SCs in healthy young men. Moreover, we report that Epo receptor mRNA is expressed in adult human SCs, suggesting that Epo may directly target SCs through ligand-receptor interaction. Moreover, endurance training, but not Epo treatment, increases the SC content in type II myofibres, as well as the content of MyoD(+) SCs. Collectively, our results suggest that Epo treatment can regulate human SCs in vivo, supported by Epo receptor mRNA expression in human SCs. In effect, long-term Epo treatment during disease conditions involving anaemia may impact SCs and warrants further investigation. Satellite cell (SC) proliferation is observed following erythropoitin treatment in vitro in murine myoblasts and endurance training in vivo in human skeletal muscle. The present study aimed to investigate the effects of prolonged erythropoiesis-stimulating agent (ESA; darbepoetin-α) treatment and endurance training, separately and combined, on SC quantity and commitment in human skeletal muscle. Thirty-five healthy, untrained men were randomized into four groups: sedentary-placebo (SP, n = 9), sedentary-ESA (SE, n = 9), training-placebo (TP, n = 9) or training-ESA (TE, n = 8). ESA/placebo was injected once weekly and training consisted of ergometer cycling three times a week for 10 weeks. Prior to and following the intervention period, blood samples and muscle biopsies were obtained and maximal oxygen uptake (V̇O2, max) was measured. Immunohistochemical analyses were used to quantify fibre type specific SCs (Pax7(+)), myonuclei and active SCs (Pax7(+)/MyoD(+)). ESA treatment led to elevated haematocrit, whereas endurance training increased V̇O2, max. Endurance training led to an increase in SCs associated with type II fibres (P < 0.05), whereas type I fibres showed no changes. Both ESA treatment and endurance training increased Pax7(+)/MyoD(+) cells, whereas only ESA treatment increased the total content of MyoD(+) cells. Epo-R mRNA presence in adult SC was tested with real-time RT-PCR using fluorescence-activated cell sorting (CD56(+)/CD45(-)/CD31(-)) to isolate cells from a human rectus abdominis muscle and was found to be considerably higher than in whole muscle. In conclusion, endurance training and ESA treatment may separately stimulate SC commitment to the myogenic program. Furthermore, ESA-treatment may alter SC activity by direct interaction with the Epo-R expressed on SCs.

Original languageEnglish
JournalThe Journal of physiology
Volume594
Issue number3
Pages (from-to)727-43
Number of pages17
ISSN0022-3751
DOIs
Publication statusPublished - 1 Feb 2016

    Research areas

  • Adult, Darbepoetin alfa, Exercise, Humans, Male, Muscle, Skeletal, Myosin Heavy Chains, Physical Endurance, RNA, Messenger, Receptors, Erythropoietin, Satellite Cells, Skeletal Muscle, Single-Blind Method, Young Adult, Journal Article, Randomized Controlled Trial, Research Support, Non-U.S. Gov't

ID: 49587526