Research
Print page Print page
Switch language
The Capital Region of Denmark - a part of Copenhagen University Hospital
Published

Role of nitric oxide and prostanoids in the regulation of leg blood flow and blood pressure in humans with essential hypertension: effect of high-intensity aerobic training

Research output: Contribution to journalJournal articleResearchpeer-review

  1. The impact of loading, unloading, ageing and injury on the human tendon

    Research output: Contribution to journalJournal articleResearchpeer-review

  2. Blood-brain barrier permeability measured using dynamic contrast-enhanced magnetic resonance imaging: a validation study

    Research output: Contribution to journalJournal articleResearchpeer-review

  3. Human brain blood flow and metabolism during isocapnic hyperoxia: the role of reactive oxygen species

    Research output: Contribution to journalJournal articleResearchpeer-review

  4. Lower body negative pressure to safely reduce intracranial pressure

    Research output: Contribution to journalJournal articleResearchpeer-review

  1. Characteristics of patients with familial Mediterranean fever in Denmark: a retrospective nationwide register-based cohort study

    Research output: Contribution to journalJournal articleResearchpeer-review

  2. The effect of two exercise modalities on skeletal muscle capillary ultrastructure in individuals with type 2 diabetes

    Research output: Contribution to journalJournal articleResearchpeer-review

  3. Reduced skeletal-muscle perfusion and impaired ATP release during hypoxia and exercise in individuals with type 2 diabetes

    Research output: Contribution to journalJournal articleResearchpeer-review

  4. Effect of endurance versus resistance training on local muscle and systemic inflammation and oxidative stress in COPD

    Research output: Contribution to journalJournal articleResearchpeer-review

View graph of relations
We examined the role of nitric oxide (NO) and prostanoids in the regulation of leg blood flow and systemic blood pressure before and after 8 weeks of aerobic high-intensity training in individuals with essential hypertension (n = 10) and matched healthy control subjects (n = 11). Hypertensive subjects were found to have a lower (P <0.05) blood flow to the exercising leg than normotensive subjects (30 W: 2.92 ± 0.16 vs. 3.39 ± 0.37 l min(−1)). Despite the lower exercise hyperaemia, pharmacological inhibition of the NO and prostanoid systems reduced leg blood flow to a similar extent during exercise in the two groups and vascular relaxation to the NO-dependent vasodilator acetylcholine was also similar between groups. High-intensity aerobic training lowered (P <0.05) resting systolic (∼9 mmHg) and diastolic (∼12 mmHg) blood pressure in subjects with essential hypertension, but this effect of training was abolished when the NO and prostanoid systems were inhibited. Skeletal muscle vascular endothelial NO synthase uncoupling, expression and phosphorylation status were similar in the two groups before and after training. These data demonstrate that a reduction in exercise hyperaemia in hypertensive subjects is not associated with a reduced capacity of the NO and prostanoid systems to induce vasodilatation or with altered acetylcholine-induced response. However, our data suggest that the observed reduction in blood pressure is related to a training-induced change in the tonic effect of NO and/or prostanoids on vascular tone.
Original languageEnglish
JournalJournal of Physiology
Volume590
Issue numberPt 6
Pages (from-to)1481-94
Number of pages14
ISSN0022-3751
DOIs
Publication statusPublished - 2012

    Research areas

  • Acetylcholine, Blood Pressure, Cyclooxygenase Inhibitors, Enzyme Inhibitors, Exercise, Female, Humans, Hypertension, Indomethacin, Leg, Male, Middle Aged, Muscle, Skeletal, Nitric Oxide, Nitric Oxide Synthase Type I, Nitric Oxide Synthase Type III, Prostaglandins, Regional Blood Flow, Vasodilation, omega-N-Methylarginine

ID: 36816773