RETRACTED ARTICLE: A non-enzymatic, isothermal strand displacement and amplification assay for rapid detection of SARS-CoV-2 RNA

Mohsen Mohammadniaei, Ming Zhang, Jon Ashley, Ulf Bech Christensen, Lennart Jan Friis-Hansen, Rasmus Gregersen, Jan Gorm Lisby, Thomas Lars Benfield, Finn Erland Nielsen, Jens Henning Rasmussen, Ellen Bøtker Pedersen, Anne Christine Rye Olinger, Lærke Tørring Kolding, Maryam Naseri, Tao Zheng, Wentao Wang, Jan Gorodkin, Yi Sun

58 Citations (Scopus)

Abstract

The current nucleic acid signal amplification methods for SARS-CoV-2 RNA detection heavily rely on the functions of biological enzymes which imposes stringent transportation and storage conditions, high cost and global supply shortages. Here, a non-enzymatic whole genome detection method based on a simple isothermal signal amplification approach is developed for rapid detection of SARS-CoV-2 RNA and potentially any types of nucleic acids regardless of their size. The assay, termed non-enzymatic isothermal strand displacement and amplification (NISDA), is able to quantify 10 RNA copies.µL-1. In 164 clinical oropharyngeal RNA samples, NISDA assay is 100 % specific, and it is 96.77% and 100% sensitive when setting up in the laboratory and hospital, respectively. The NISDA assay does not require RNA reverse-transcription step and is fast (<30 min), affordable, highly robust at room temperature (>1 month), isothermal (42 °C) and user-friendly, making it an excellent assay for broad-based testing.

Original languageEnglish
Article number5089
JournalNature Communications
Volume12
Issue number1
Pages (from-to)1-12
Number of pages12
DOIs
Publication statusPublished - 24 Aug 2021

Keywords

  • COVID-19 Nucleic Acid Testing/methods
  • COVID-19 Testing
  • COVID-19/diagnosis
  • Humans
  • Nucleic Acid Amplification Techniques/methods
  • RNA, Viral/genetics
  • Recombination, Genetic
  • SARS-CoV-2/genetics

Fingerprint

Dive into the research topics of 'RETRACTED ARTICLE: A non-enzymatic, isothermal strand displacement and amplification assay for rapid detection of SARS-CoV-2 RNA'. Together they form a unique fingerprint.

Cite this