TY - JOUR
T1 - Regression calibration of self-reported mobile phone use to optimize quantitative risk estimation in the COSMOS study
AU - Reedijk, Marije
AU - Portengen, Lützen
AU - Auvinen, Anssi
AU - Kojo, Katja
AU - Heinävaara, Sirpa
AU - Feychting, Maria
AU - Tettamanti, Giorgio
AU - Hillert, Lena
AU - Elliott, Paul
AU - Toledano, Mireille B
AU - Smith, Rachel B
AU - Heller, Joël
AU - Schüz, Joachim
AU - Deltour, Isabelle
AU - Poulsen, Aslak Harbo
AU - Johansen, Christoffer
AU - Verheij, Robert
AU - Peeters, Petra
AU - Rookus, Matti
AU - Traini, Eugenio
AU - Huss, Anke
AU - Kromhout, Hans
AU - Vermeulen, Roel
AU - Study Group, The Cosmos
N1 - © The Author(s) 2024. Published by Oxford University Press on behalf of the Johns Hopkins Bloomberg School of Public Health.
PY - 2024/5/13
Y1 - 2024/5/13
N2 - The Cohort Study of Mobile Phone Use and Health (COSMOS) has repeatedly collected self-reported and operator-recorded data on mobile phone use. Assessing health effects using self-reported information is prone to measurement error, but operator data were available prospectively for only part of the study population and did not cover past mobile phone use. To optimize the available data and reduce bias, we evaluated different statistical approaches for constructing mobile phone exposure histories within COSMOS. We evaluated and compared the performance of four regression calibration (RC) methods (simple, direct, inverse, and generalized additive model for location, shape, and scale), complete-case (CC) analysis and multiple imputation (MI) in a simulation study with a binary health outcome. We used self-reported and operator-recorded mobile phone call data collected at baseline (2007-2012) from participants in Denmark, Finland, the Netherlands, Sweden, and the UK. Parameter estimates obtained using simple, direct, and inverse RC methods were associated with less bias and lower mean squared error than those obtained with CC analysis or MI. We showed that RC methods resulted in more accurate estimation of the relation between mobile phone use and health outcomes, by combining self-reported data with objective operator-recorded data available for a subset of participants.
AB - The Cohort Study of Mobile Phone Use and Health (COSMOS) has repeatedly collected self-reported and operator-recorded data on mobile phone use. Assessing health effects using self-reported information is prone to measurement error, but operator data were available prospectively for only part of the study population and did not cover past mobile phone use. To optimize the available data and reduce bias, we evaluated different statistical approaches for constructing mobile phone exposure histories within COSMOS. We evaluated and compared the performance of four regression calibration (RC) methods (simple, direct, inverse, and generalized additive model for location, shape, and scale), complete-case (CC) analysis and multiple imputation (MI) in a simulation study with a binary health outcome. We used self-reported and operator-recorded mobile phone call data collected at baseline (2007-2012) from participants in Denmark, Finland, the Netherlands, Sweden, and the UK. Parameter estimates obtained using simple, direct, and inverse RC methods were associated with less bias and lower mean squared error than those obtained with CC analysis or MI. We showed that RC methods resulted in more accurate estimation of the relation between mobile phone use and health outcomes, by combining self-reported data with objective operator-recorded data available for a subset of participants.
U2 - 10.1093/aje/kwae039
DO - 10.1093/aje/kwae039
M3 - Journal article
C2 - 38751312
SN - 0002-9262
JO - American Journal of Epidemiology
JF - American Journal of Epidemiology
ER -