Quantifying the Impact of Rare and Ultra-rare Coding Variation across the Phenotypic Spectrum

GoT2D/T2D-GENES Consortium

71 Citations (Scopus)

Abstract

There is a limited understanding about the impact of rare protein-truncating variants across multiple phenotypes. We explore the impact of this class of variants on 13 quantitative traits and 10 diseases using whole-exome sequencing data from 100,296 individuals. Protein-truncating variants in genes intolerant to this class of mutations increased risk of autism, schizophrenia, bipolar disorder, intellectual disability, and ADHD. In individuals without these disorders, there was an association with shorter height, lower education, increased hospitalization, and reduced age at enrollment. Gene sets implicated from GWASs did not show a significant protein-truncating variants burden beyond what was captured by established Mendelian genes. In conclusion, we provide a thorough investigation of the impact of rare deleterious coding variants on complex traits, suggesting widespread pleiotropic risk.

Original languageEnglish
JournalAmerican Journal of Human Genetics
Volume102
Issue number6
Pages (from-to)1204-1211
Number of pages8
ISSN0002-9297
DOIs
Publication statusPublished - 7 Jun 2018

Fingerprint

Dive into the research topics of 'Quantifying the Impact of Rare and Ultra-rare Coding Variation across the Phenotypic Spectrum'. Together they form a unique fingerprint.

Cite this