Research
Print page Print page
Switch language
The Capital Region of Denmark - a part of Copenhagen University Hospital
Published

Quantification of the effect of water exchange in dynamic contrast MRI perfusion measurements in the brain and heart.

Research output: Contribution to journalJournal articleResearchpeer-review

  1. Quantification of cerebral perfusion and cerebrovascular reserve using Turbo-QUASAR arterial spin labeling MRI

    Research output: Contribution to journalJournal articleResearchpeer-review

  2. Coil profile estimation strategies for parallel imaging with hyperpolarized 13 C MRI

    Research output: Contribution to journalJournal articleResearchpeer-review

  3. Gamma-aminobutyric acid edited echo-planar spectroscopic imaging (EPSI) with MEGA-sLASER at 7T

    Research output: Contribution to journalJournal articleResearchpeer-review

  4. Comparison of prospective head motion correction with NMR field probes and an optical tracking system

    Research output: Contribution to journalJournal articleResearchpeer-review

  5. Improved calculation of the equilibrium magnetization of arterial blood in arterial spin labeling

    Research output: Contribution to journalJournal articleResearchpeer-review

  • H B Larsson
  • S Rosenbaum
  • T Fritz-Hansen
View graph of relations
Measurement of myocardial and brain perfusion when using exogenous contrast agents (CAs) such as gadolinium-DTPA (Gd-DTPA) and MRI is affected by the diffusion of water between compartments. This water exchange may have an impact on signal enhancement, or, equivalently, on the longitudinal relaxation rate, and could therefore cause a systematic error in the calculation of perfusion (F) or the perfusion-related parameter, the unidirectional influx constant over the capillary membranes (K(i)). The aim of this study was to quantify the effect of water exchange on estimated perfusion (F or K(i)) by using a realistic simulation. These results were verified by in vivo studies of the heart and brain in humans. The conclusion is that water exchange between the vascular and extravascular extracellular space has no effect on K(i) estimation in the myocardium when a normal dose of Gd-DTPA is used. Water exchange can have a significant effect on perfusion estimation (F) in the brain when using Gd-DTPA, where it acts as an intravascular contrast agent.
Translated title of the contributionQuantification of the effect of water exchange in dynamic contrast MRI perfusion measurements in the brain and heart.
Original languageEnglish
JournalMagnetic Resonance in Medicine
Volume46
Issue number2
Pages (from-to)272-281
Number of pages10
ISSN0740-3194
DOIs
Publication statusPublished - 2001

ID: 32545597