Research
Print page Print page
Switch language
The Capital Region of Denmark - a part of Copenhagen University Hospital
Published

Prenatal exposure to perfluorodecanoic acid is associated with lower circulating concentration of adrenal steroid metabolites during mini puberty in human female infants. The Odense Child Cohort

Research output: Contribution to journalJournal articleResearchpeer-review

  1. Pregnancy exposure to bisphenol A and duration of breastfeeding

    Research output: Contribution to journalJournal articleResearchpeer-review

  2. Pooled analysis of recent studies of magnetic fields and childhood leukemia

    Research output: Contribution to journalJournal articleResearchpeer-review

  3. Road and railway noise and risk for breast cancer: A nationwide study covering Denmark

    Research output: Contribution to journalJournal articleResearchpeer-review

  4. The influence of prenatal exposure to phthalates on subsequent male growth and body composition in adolescence

    Research output: Contribution to journalJournal articleResearchpeer-review

  5. Use of stored serum in the study of time trends and geographical differences in exposure of pregnant women to phthalates

    Research output: Contribution to journalJournal articleResearchpeer-review

  1. Oophorectomy and rate of dementia: a prospective cohort study

    Research output: Contribution to journalJournal articleResearchpeer-review

  2. Pregnancy exposure to bisphenol A and duration of breastfeeding

    Research output: Contribution to journalJournal articleResearchpeer-review

  3. Environmental factors in declining human fertility

    Research output: Contribution to journalReviewResearchpeer-review

View graph of relations

BACKGROUND: Fetal programming of the endocrine system may be affected by exposure to perfluoroalkyl substances (PFAAs), as they easily cross the placental barrier. In vitro studies suggest that PFAAs may disrupt steroidogenesis. "Mini puberty" refers to a transient surge in circulating androgens, androgen precursors, and gonadotropins in infant girls and boys within the first postnatal months. We hypothesize that prenatal PFAA exposure may decrease the concentrations of androgens in mini puberty.

OBJECTIVES: To investigate associations between maternal serum PFAA concentrations in early pregnancy and serum concentrations of androgens, their precursors, and gonadotropins during mini puberty in infancy.

METHODS: In the prospective Odense Child Cohort, maternal pregnancy serum concentrations of five PFAAs: Perfluorohexane sulfonic acid (PFHxS), perfluorooctane sulfonic acid (PFOS), perfluorooctanoic acid (PFOA), perfluorononanoic acid (PFNA), and perfluorodecanoic acid (PFDA) were measured at median gestational week 12 (IQR: 10, 15) in 1628 women. Among these, offspring serum concentrations of dehydroepiandrosterone (DHEA), dehydroepiandrosterone-sulfate (DHEAS), androstenedione, 17-hydroxyprogesterone (17-OHP), testosterone, luteinizing (LH) and follicle stimulating hormones (FSH) were measured in 373 children (44% girls; 56% boys) at a mean age of 3.9 (±0.9 SD) months. Multivariate linear regression models were performed to estimate associations.

RESULTS: A two-fold increase in maternal PFDA concentration was associated with a reduction in DHEA concentration by -19.6% (95% CI: -32.9%, -3.8%) in girls. In girls, also, the androstenedione and DHEAS concentrations were decreased, albeit non-significantly (p < 0.11), with a two-fold increase in maternal PFDA concentration. In boys, no significant association was found between PFAAs and concentrations of androgens, their precursors, and gonadotropins during mini puberty.

CONCLUSION: Prenatal PFDA exposure was associated with significantly lower serum DHEA concentrations and possibly also with lower androstenedione and DHEAS concentrations in female infants at mini puberty. The clinical significance of these findings remains to be elucidated.

Original languageEnglish
Article number109101
JournalEnvironmental Research
Volume182
Pages (from-to)109101
ISSN0013-9351
DOIs
Publication statusPublished - Mar 2020

    Research areas

  • Adrenal, Androgens, Developmental toxicity, Mini puberty, Perfluoroalkyl substances, Pregnancy

ID: 59402877