Prediction of serious outcomes based on continuous vital sign monitoring of high-risk patients

Ævar Örn Kristinsson, Ying Gu, Søren M Rasmussen, Jesper Mølgaard, Camilla Haahr-Raunkjær, Christian S Meyhoff, Eske K Aasvang, Helge B D Sørensen

Abstract

Continuous monitoring of high-risk patients and early prediction of severe outcomes is crucial to prevent avoidable deaths. Current clinical monitoring is primarily based on intermittent observation of vital signs and the early warning scores (EWS). The drawback is lack of time series dynamics and correlations among vital signs. This study presents an approach to real-time outcome prediction based on machine learning from continuous recording of vital signs. Systolic blood pressure, diastolic blood pressure, heart rate, pulse rate, respiration rate and peripheral blood oxygen saturation were continuously acquired by wearable devices from 292 post-operative high-risk patients. The outcomes from serious complications were evaluated based on review of patients' medical record. The descriptive statistics of vital signs and patient demographic information were used as features. Four machine learning models K-Nearest-Neighbors (KNN), Decision Trees (DT), Random Forest (RF), and Boosted Ensemble (BE) were trained and tested. In static evaluation, all four models had comparable prediction performance to that of the state of the art. In dynamic evaluation, the models trained from the static evaluation were tested with continuous data. RF and BE obtained the lower false positive rate (FPR) of 0.073 and 0.055 on no-outcome patients respectively. The four models KNN, DT, RF and BE had area under receiver operating characteristic curve (AUROC) of 0.62, 0.64, 0.65 and 0.64 respectively on outcome patients. RF was found to be optimal model with lower FPR on no-outcome patients and a higher AUROC on outcome patients. These findings are encouraging and indicate that additional investigations must focus on validating performance in a clinical setting before deployment of the real-time outcome prediction.

Original languageEnglish
Article number105559
JournalComputers in Biology and Medicine
Volume147
Pages (from-to)105559
ISSN0010-4825
DOIs
Publication statusPublished - Aug 2022

Keywords

  • Area Under Curve
  • Humans
  • Machine Learning
  • Oximetry
  • ROC Curve
  • Vital Signs

Fingerprint

Dive into the research topics of 'Prediction of serious outcomes based on continuous vital sign monitoring of high-risk patients'. Together they form a unique fingerprint.

Cite this