TY - JOUR
T1 - Predicting Hearing Loss in Testicular Cancer Patients after Cisplatin-Based Chemotherapy
AU - Garcia, Sara L
AU - Lauritsen, Jakob
AU - Christiansen, Bernadette K
AU - Hansen, Ida F
AU - Bandak, Mikkel
AU - Dalgaard, Marlene D
AU - Daugaard, Gedske
AU - Gupta, Ramneek
PY - 2023/8/1
Y1 - 2023/8/1
N2 - Testicular cancer is predominantly curable, but the long-term side effects of chemotherapy have a severe impact on life quality. In this research study, we focus on hearing loss as a part of overall chemotherapy-induced ototoxicity. This is a unique approach where we combine clinical data from the acclaimed nationwide Danish Testicular Cancer (DaTeCa)-Late database. Clinical and genetic data on 433 patients were collected from hospital files in October 2014. Hearing loss was classified according to the FACT/GOG-Ntx-11 version 4 self-reported Ntx6. Machine learning models combining a genome-wide association study within a nested cross-validated logistic regression were applied to identify patients at high risk of hearing loss. The model comprising clinical and genetic data identified 67% of the patients with hearing loss; however, this was with a false discovery rate of 49%. For the non-affected patients, the model identified 66% of the patients with a false omission rate of 19%. An area under the receiver operating characteristic (ROC-AUC) curve of 0.73 (95% CI, 0.71-0.74) was obtained, and the model suggests genes SOD2 and MGST3 as important in improving prediction over the clinical-only model with a ROC-AUC of 0.66 (95% CI, 0.65-0.66). Such prediction models may be used to allow earlier detection and prevention of hearing loss. We suggest a possible biological mechanism for cisplatin-induced hearing loss development. On confirmation in larger studies, such models can help balance treatment in clinical practice.
AB - Testicular cancer is predominantly curable, but the long-term side effects of chemotherapy have a severe impact on life quality. In this research study, we focus on hearing loss as a part of overall chemotherapy-induced ototoxicity. This is a unique approach where we combine clinical data from the acclaimed nationwide Danish Testicular Cancer (DaTeCa)-Late database. Clinical and genetic data on 433 patients were collected from hospital files in October 2014. Hearing loss was classified according to the FACT/GOG-Ntx-11 version 4 self-reported Ntx6. Machine learning models combining a genome-wide association study within a nested cross-validated logistic regression were applied to identify patients at high risk of hearing loss. The model comprising clinical and genetic data identified 67% of the patients with hearing loss; however, this was with a false discovery rate of 49%. For the non-affected patients, the model identified 66% of the patients with a false omission rate of 19%. An area under the receiver operating characteristic (ROC-AUC) curve of 0.73 (95% CI, 0.71-0.74) was obtained, and the model suggests genes SOD2 and MGST3 as important in improving prediction over the clinical-only model with a ROC-AUC of 0.66 (95% CI, 0.65-0.66). Such prediction models may be used to allow earlier detection and prevention of hearing loss. We suggest a possible biological mechanism for cisplatin-induced hearing loss development. On confirmation in larger studies, such models can help balance treatment in clinical practice.
UR - http://www.scopus.com/inward/record.url?scp=85167832717&partnerID=8YFLogxK
U2 - 10.3390/cancers15153923
DO - 10.3390/cancers15153923
M3 - Journal article
C2 - 37568739
SN - 2072-6694
VL - 15
JO - Cancers
JF - Cancers
IS - 15
M1 - 3923
ER -