Research
Print page Print page
Switch language
The Capital Region of Denmark - a part of Copenhagen University Hospital
Published

Pharmacokinetic analysis of [68Ga]Ga-DOTA-TOC PET in meningiomas for assessment of in vivo somatostatin receptor subtype 2

Research output: Contribution to journalJournal articleResearchpeer-review

  1. EANM position paper on the role of radiobiology in nuclear medicine

    Research output: Contribution to journalJournal articleResearchpeer-review

  2. Impact of the COVID-19 pandemic on nuclear medicine departments in Europe

    Research output: Contribution to journalJournal articleResearchpeer-review

  3. Finding our way through the labyrinth of dementia biomarkers

    Research output: Contribution to journalEditorialResearchpeer-review

  4. EANM/SNMMI practice guideline for [18F]FDG PET/CT external beam radiotherapy treatment planning in uterine cervical cancer v1.0

    Research output: Contribution to journalJournal articleResearchpeer-review

  1. Novel Homozygous Truncating Variant Widens the Spectrum of Early-Onset Multisystemic SYNE1 Ataxia

    Research output: Contribution to journalJournal articleResearchpeer-review

  2. Socioeconomic functioning in patients with brain abscess - a nationwide, population-based cohort study in Denmark

    Research output: Contribution to journalJournal articleResearchpeer-review

  3. Implementation of TERT promoter mutations improve prognostication of the WHO classification in meningioma

    Research output: Contribution to journalJournal articleResearchpeer-review

  4. Postoperative de novo epilepsy after craniotomy a nationwide register-based cohort study

    Research output: Contribution to journalJournal articleResearchpeer-review

View graph of relations

PURPOSE: DOTA-D-Phe1-Tyr3-octreotide with gallium-68 ([68Ga]Ga-DOTA-TOC) is one of the PET tracers that forms the basis for peptide receptor radionuclide therapy based on somatostatin receptor subtype 2 (SSTR2) expression in meningiomas. Yet, the quantitative relationship between [68Ga]Ga-DOTA-TOC accumulation and SSTR2 is unknown. We conducted a correlative analysis of a range of [68Ga]Ga-DOTA-TOC PET metric(s) as imaging surrogate(s) of the receptor binding in meningiomas by correlating the PET results with SSTR2 expression from surgical specimens. We additionally investigated possible influences of secondary biological factors such as vascularization, inflammation and proliferation.

METHODS: Fifteen patients with MRI-presumed or recurrent meningiomas underwent a 60-min dynamic [68Ga]Ga-DOTA-TOC PET/CT before surgery. The PET data comprised maximum and mean standardized uptake values (SUVmax, SUVmean) with and without normalization to reference regions, and quantitative measurements derived from kinetic modelling using a reversible two-tissue compartment model with the fractional blood volume (VB). Expressions of SSTR2 and proliferation (Ki-67, phosphohistone-H3, proliferating cell nuclear antigen) were determined by immunohistochemistry and/or quantitative polymerase chain reaction (qPCR), while biomarkers of vascularization (vascular endothelial growth factor A (VEGFA), endothelial marker CD34) and inflammation (cytokine interleukin-18, microglia/macrophage-specific marker CD68) by qPCR.

RESULTS: Histopathology revealed 12 World Health Organization (WHO) grade I and three WHO grade II meningiomas showing no link to SSTR2. The majority of [68Ga]Ga-DOTA-TOC PET metrics showed significant associations with SSTR2 protein, while all PET metrics were positively correlated with SSTR2 mRNA with the best results for mean tumour-to-blood ratio (TBRmean) (r = 0.757, P = 0.001) and SUVmean (r = 0.714, P = 0.003). Significant positive correlations were also found between [68Ga]Ga-DOTA-TOC PET metrics, and VEGFA and VB. SSTR2 mRNA was moderately correlated with VEGFA (r = 0.539, P = 0.038). Neither [68Ga]Ga-DOTA-TOC PET metrics nor SSTR2 were correlated with proliferation or inflammation.

CONCLUSION: [68Ga]Ga-DOTA-TOC accumulation in meningiomas is associated with SSTR2 binding and vascularization with TBRmean being the best PET metric for assessing SSTR2.

Original languageEnglish
JournalEuropean Journal of Nuclear Medicine and Molecular Imaging
Volume47
Issue number11
Pages (from-to)2577-2588
Number of pages12
ISSN1619-7070
DOIs
Publication statusPublished - Oct 2020

    Research areas

  • Meningioma, SSTR2, VEGFA, [Ga-68]Ga-DOTA-TOC, [ Ga]Ga-DOTA-TOC

ID: 61372559