Research
Print page Print page
Switch language
The Capital Region of Denmark - a part of Copenhagen University Hospital
Published

Overcoming culture restriction for SARS-CoV-2 in human cells facilitates the screening of compounds inhibiting viral replication

Research output: Contribution to journalJournal articleResearchpeer-review

DOI

  1. Neutralisation titres against SARS-CoV-2 are sustained 6 months after onset of symptoms in individuals with mild COVID-19

    Research output: Contribution to journalJournal articleResearchpeer-review

  2. Vaccines against hepatitis C: a travel into neutralisation space

    Research output: Contribution to journalComment/debateResearchpeer-review

  3. In vitro efficacy of artemisinin-based treatments against SARS-CoV-2

    Research output: Contribution to journalJournal articleResearchpeer-review

  4. Prevalence and association with birth outcomes of low Vitamin D levels among pregnant women living with HIV

    Research output: Contribution to journalJournal articleResearchpeer-review

View graph of relations

Efforts to mitigate the coronavirus disease 2019 (COVID-19) pandemic include the screening of existing antiviral molecules that could be repurposed to treat severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infections. Although SARS-CoV-2 replicates and propagates efficiently in African green monkey kidney (Vero) cells, antivirals such as nucleos(t)ide analogs (NUCs) often show decreased activity in these cells due to inefficient metabolization. SARS-CoV-2 exhibits low viability in human cells in culture. Here, serial passages of a SARS-CoV-2 isolate (original-SARS2) in the human hepatoma cell clone Huh7.5 led to the selection of a variant (adapted-SARS2) with significantly improved infectivity in human liver (Huh7 and Huh7.5) and lung cancer (unmodified Calu-1 and A549) cells. The adapted virus exhibited mutations in the spike protein, including a 9-amino-acid deletion and 3 amino acid changes (E484D, P812R, and Q954H). E484D also emerged in Vero E6-cultured viruses that became viable in A549 cells. Original and adapted viruses were susceptible to scavenger receptor class B type 1 (SR-B1) receptor blocking, and adapted-SARS2 exhibited significantly less dependence on ACE2. Both variants were similarly neutralized by COVID-19 convalescent-phase plasma, but adapted-SARS2 exhibited increased susceptibility to exogenous type I interferon. Remdesivir inhibited original- and adapted-SARS2 similarly, demonstrating the utility of the system for the screening of NUCs. Among the tested NUCs, only remdesivir, molnupiravir, and, to a limited extent, galidesivir showed antiviral effects across human cell lines, whereas sofosbuvir, ribavirin, and favipiravir had no apparent activity. Analogously to the emergence of spike mutations in vivo, the spike protein is under intense adaptive selection pressure in cell culture. Our results indicate that the emergence of spike mutations will most likely not affect the activity of remdesivir.

Original languageEnglish
Article numbere0009721
JournalAntimicrobial Agents and Chemotherapy
Volume65
Issue number7
ISSN0066-4804
DOIs
Publication statusPublished - 17 Jun 2021

    Research areas

  • A549 cells, Coronavirus, COVID-19, Galidesivir, Huh7.5 cells, Molnupiravir, Nucleotide analogs, Remdesivir, Sofosbuvir, Virus evolution

ID: 65316672