TY - JOUR
T1 - Opening of ATP-sensitive potassium channels causes migraine attacks
T2 - a new target for the treatment of migraine
AU - Al-Karagholi, Mohammad Al-Mahdi
AU - Hansen, Jakob Møller
AU - Guo, Song
AU - Olesen, Jes
AU - Ashina, Messoud
N1 - © The Author(s) (2019). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved. For Permissions, please email: [email protected].
PY - 2019
Y1 - 2019
N2 - Migraine is one of the most disabling and prevalent of all disorders. To improve understanding of migraine mechanisms and to suggest a new therapeutic target, we investigated whether opening of ATP-sensitive potassium channels (KATP) would cause migraine attacks. In this randomized, double-blind, placebo-controlled, crossover study, 16 patients aged 18-49 years with one to five migraine attacks a month were randomly allocated to receive an infusion of 0.05 mg/min KATP channel opener levcromakalim and placebo on two different days (ClinicalTrials.gov number, NCT03228355). The primary endpoints were the difference in incidence of migraine attacks, headaches and the difference in area under the curve (AUC) for headache intensity scores (0-12 h) and for middle cerebral artery blood flow velocity (0-2 h) between levcromakalim and placebo. Between 24 May 2017 and 23 November 2017, 16 patients randomly received levcromakalim and placebo on two different days. Sixteen patients (100%) developed migraine attacks after levcromakalim compared with one patient (6%) after placebo (P = 0.0001); the difference of incidence is 94% [95% confidence interval (CI) 78-100%]. The incidence of headache over the 12 h observation period was higher but not significant after levcromakalim (n = 16) than after placebo (n = 7) (P = 0.016) (95% CI 16-71%). The AUC for headache intensity was significantly larger after levcromakalim compared to placebo (AUC0-12h, P < 0.0001). There was no change in mean middle cerebral artery blood flow velocity after levcromakalim compared to placebo (AUC0-2hP = 0.46). Opening of KATP channels caused migraine attacks in all patients. This suggests a crucial role of these channels in migraine pathophysiology and that KATP channel blockers could be potential targets for novel drugs for migraine.
AB - Migraine is one of the most disabling and prevalent of all disorders. To improve understanding of migraine mechanisms and to suggest a new therapeutic target, we investigated whether opening of ATP-sensitive potassium channels (KATP) would cause migraine attacks. In this randomized, double-blind, placebo-controlled, crossover study, 16 patients aged 18-49 years with one to five migraine attacks a month were randomly allocated to receive an infusion of 0.05 mg/min KATP channel opener levcromakalim and placebo on two different days (ClinicalTrials.gov number, NCT03228355). The primary endpoints were the difference in incidence of migraine attacks, headaches and the difference in area under the curve (AUC) for headache intensity scores (0-12 h) and for middle cerebral artery blood flow velocity (0-2 h) between levcromakalim and placebo. Between 24 May 2017 and 23 November 2017, 16 patients randomly received levcromakalim and placebo on two different days. Sixteen patients (100%) developed migraine attacks after levcromakalim compared with one patient (6%) after placebo (P = 0.0001); the difference of incidence is 94% [95% confidence interval (CI) 78-100%]. The incidence of headache over the 12 h observation period was higher but not significant after levcromakalim (n = 16) than after placebo (n = 7) (P = 0.016) (95% CI 16-71%). The AUC for headache intensity was significantly larger after levcromakalim compared to placebo (AUC0-12h, P < 0.0001). There was no change in mean middle cerebral artery blood flow velocity after levcromakalim compared to placebo (AUC0-2hP = 0.46). Opening of KATP channels caused migraine attacks in all patients. This suggests a crucial role of these channels in migraine pathophysiology and that KATP channel blockers could be potential targets for novel drugs for migraine.
U2 - 10.1093/brain/awz199
DO - 10.1093/brain/awz199
M3 - Journal article
C2 - 31292608
SN - 0006-8950
VL - 142
SP - 2644
EP - 2654
JO - Brain
JF - Brain
IS - 9
ER -