Research
Print page Print page
Switch language
The Capital Region of Denmark - a part of Copenhagen University Hospital
Published

Myocardial perfusion modeling using MRI.

Research output: Contribution to journalJournal articleResearchpeer-review

  1. Quantification of cerebral perfusion and cerebrovascular reserve using Turbo-QUASAR arterial spin labeling MRI

    Research output: Contribution to journalJournal articleResearchpeer-review

  2. Coil profile estimation strategies for parallel imaging with hyperpolarized 13 C MRI

    Research output: Contribution to journalJournal articleResearchpeer-review

  3. Gamma-aminobutyric acid edited echo-planar spectroscopic imaging (EPSI) with MEGA-sLASER at 7T

    Research output: Contribution to journalJournal articleResearchpeer-review

  4. Comparison of prospective head motion correction with NMR field probes and an optical tracking system

    Research output: Contribution to journalJournal articleResearchpeer-review

  5. Improved calculation of the equilibrium magnetization of arterial blood in arterial spin labeling

    Research output: Contribution to journalJournal articleResearchpeer-review

View graph of relations
In the present study, it is shown that it is possible to quantify myocardial perfusion using magnetic resonance imaging in combination with gadolinium diethylenetriaminopentaacetic acid (Gd-DTPA). Previously, a simple model and method for measuring myocardial perfusion using an inversion recovery turbo-FLASH (fast low-angle shot) sequence and Gd-DTPA has been presented. Here, an extension of the model is presented taking into account fast and slow water exchange between the compartments, enabling the calculation of the unidirectional influx constant (Ki) for Gd-DTPA, the distribution volume of Gd-DTPA (lambda), the vascular blood volume (Vb), and the time delay through the coronary arteries (delta T). The model was evaluated by computer simulation and used on experimental results from seven healthy subjects. The results in the healthy volunteers for a region of interest placed in the anterior myocardial wall were (mean +/- SD) Ki = 54 +/- 10 ml/100 g/min, lambda = 30 +/- 3 ml/100 g, Vb = 9 +/- 2 ml/100 g, delta T = 3.2 +/- 1.1 s. These results are in good agreement with similar results obtained by other methods.
Translated title of the contributionMyocardial perfusion modeling using MRI.
Original languageEnglish
JournalMagnetic Resonance in Medicine
Volume35
Issue number5
Pages (from-to)716-726
Number of pages11
ISSN0740-3194
Publication statusPublished - 1996

ID: 32557381