Research
Print page Print page
Switch language
The Capital Region of Denmark - a part of Copenhagen University Hospital
Published

Muscle-strain injury exudate favors acute tissue healing and prolonged connective tissue formation in humans

Research output: Contribution to journalJournal articleResearchpeer-review

DOI

  1. Thyroid hormone receptor α in skeletal muscle is essential for T3-mediated increase in energy expenditure

    Research output: Contribution to journalJournal articleResearchpeer-review

  2. Influence of FGF23 and Klotho on male reproduction: Systemic vs direct effects

    Research output: Contribution to journalJournal articleResearchpeer-review

  3. Preserved capacity for satellite cell proliferation, regeneration, and hypertrophy in the skeletal muscle of healthy elderly men

    Research output: Contribution to journalJournal articleResearchpeer-review

  4. Prenatal inflammation suppresses blood Th1 polarization and gene clusters related to cellular energy metabolism in preterm newborns

    Research output: Contribution to journalJournal articleResearchpeer-review

  1. The influence of an orthopaedic walker boot on forefoot force

    Research output: Contribution to journalJournal articleResearchpeer-review

  2. UTE T2* mapping of tendinopathic patellar tendons: an MRI reproducibility study

    Research output: Contribution to journalJournal articleResearchpeer-review

  3. Muscles adaptation to aging and training: architectural changes - a randomised trial

    Research output: Contribution to journalJournal articleResearchpeer-review

  4. Age-related myofiber atrophy in old mice is reversed by ten weeks voluntary high-resistance wheel running

    Research output: Contribution to journalJournal articleResearchpeer-review

View graph of relations

Traumatic strain injury in skeletal muscle is often associated with fluid accumulation at the site of rupture, but the role of this injury exudate (EX) in cellular responses and healing is unknown. We aimed to characterize the EX sampled from human hamstring or calf muscles following a strain injury (n = 12). The cytokine and growth-factor profile, gene expression, and transcriptome analysis of EX-derived cells were compared with blood taken simultaneously from the same individuals. Cellular responses to the EX were tested in 3-dimensional (3D) culture based on primary human fibroblasts and myoblasts isolated from hamstring muscles. The EX contained a highly proinflammatory profile with a substantial expression of angiogenic factors. The proinflammatory profile was present in samples taken early postinjury and in samples aspirated several weeks postinjury, suggesting persistent inflammation. Cells derived from the EX demonstrated an increased expression of fibrogenic, adipogenic, and angiogenesis-related genes in comparison with blood cells. The injury EX stimulated fibroblast proliferation 2-fold compared with plasma, whereas such an effect was not seen for myoblasts. Finally, in 3D cell culture, the EX induced an up-regulation of connective tissue-related genes. In summary, EX formation following a muscle-strain injury stimulates fibroblast proliferation and the synthesis of connective tissue in fibroblasts. This suggests that the EX promotes an acute tissue-healing response but potentially also contributes to the formation of fibrotic tissue in the later phases of tissue repair.-Bayer, M. L., Bang, L., Hoegberget-Kalisz, M., Svensson, R. B., Olesen, J. L., Karlsson, M. M., Schjerling, P., Hellsten, Y., Hoier, B., Magnusson, S. P., Kjaer, M. Muscle-strain injury exudate favors acute tissue healing and prolonged connective tissue formation in humans.

Original languageEnglish
JournalFASEB Journal
Volume33
Issue number9
Pages (from-to)10369-10382
Number of pages14
ISSN0892-6638
DOIs
Publication statusPublished - Sep 2019

ID: 58972060