Research
Print page Print page
Switch language
The Capital Region of Denmark - a part of Copenhagen University Hospital
Published

MEK1/2 inhibitor U0126, but not nimodipine, reduces upregulation of cerebrovascular contractile receptors after subarachnoid haemorrhage in rats

Research output: Contribution to journalJournal articleResearchpeer-review

  1. Kinetics of the soluble urokinase plasminogen activator receptor (suPAR) in cirrhosis

    Research output: Contribution to journalJournal articleResearchpeer-review

  2. Incidence, prevalence and risk factors for hepatitis C in Danish prisons

    Research output: Contribution to journalJournal articleResearchpeer-review

  3. The Strengths and Difficulties Questionnaire and standardized academic tests: Reliability across respondent type and age

    Research output: Contribution to journalJournal articleResearchpeer-review

  1. Exploration of purinergic receptors as potential anti-migraine targets using established pre-clinical migraine models

    Research output: Contribution to journalJournal articleResearchpeer-review

  2. Does inflammation have a role in migraine?

    Research output: Contribution to journalReviewResearchpeer-review

  3. The changing faces of migraine

    Research output: Contribution to journalEditorialResearchpeer-review

  4. Some aspects on the pathophysiology of migraine and a review of device therapies for migraine and cluster headache

    Research output: Contribution to journalReviewResearchpeer-review

View graph of relations

Vascular pathophysiological changes after haemorrhagic stroke, such as phenotypic modulation of the cerebral arteries and cerebral vasospasms, are associated with delayed cerebral ischemia (DCI) and poor outcome. The only currently approved drug treatment shown to reduce the risk of DCI and improve neurologic outcome after aneurysmal subarachnoid haemorrhage (SAH) is nimodipine, a dihydropyridine L-type voltage-gated Ca2+ channel blocker. MEK1/2 mediated transcriptional upregulation of contractile receptors, including endothelin-1 (ET-1) receptors, has previously been shown to be a factor in the pathology of SAH. The aim of the study was to compare intrathecal and subcutaneous treatment regimens of nimodipine and intrathecal treatment regimens of U0126, a MEK1/2 inhibitor, in a single injection experimental rat SAH model with post 48 h endpoints consisting of wire myography of cerebral arteries, flow cytometry of cerebral arterial tissue and behavioural evaluation. Following ET-1 concentration-response curves, U0126 exposed arteries had a significantly lower ET-1max than vehicle arteries. Arteries from both the intrathecal- and subcutaneous nimodipine treated animals had significantly higher ET-1max contractions than the U0126 arteries. Furthermore, Ca2+ concentration response curves (precontracted with ET-1 and in the presence of nimodipine) showed that nimodipine treatment could result in larger nimodipine insensitive contractions compared to U0126. Flow cytometry showed decreased protein expression of the ETB receptor in U0126 treated cerebral vascular smooth muscle cells compared to vehicle. Only U0126 treatment lowered ET-1max contractions and ETB receptor levels, as well as decreased the contractions involving nimodipine-insensitive Ca2+ channels, when compared to both intrathecal and subcutaneous nimodipine treatment. This indicate that targeting gene expression might be a better strategy than blocking specific receptors or ion channels in future treatments of SAH.

Original languageEnglish
Article numbere0215398
JournalPLoS One
Volume14
Issue number4
Pages (from-to)e0215398
ISSN1932-6203
DOIs
Publication statusPublished - 2019

ID: 57158564