Research
Print page Print page
Switch language
The Capital Region of Denmark - a part of Copenhagen University Hospital
Published

Lipoprotein lipase is active as a monomer

Research output: Contribution to journalJournal articleResearchpeer-review

DOI

  1. Unfolding of monomeric lipoprotein lipase by ANGPTL4: Insight into the regulation of plasma triglyceride metabolism

    Research output: Contribution to journalJournal articleResearchpeer-review

  2. Galnt11 regulates kidney function by glycosylating the endocytosis receptor megalin to modulate ligand binding

    Research output: Contribution to journalJournal articleResearchpeer-review

  3. N-acyl taurines are endogenous lipid messengers that improve glucose homeostasis

    Research output: Contribution to journalJournal articleResearchpeer-review

  4. Early sarcomere and metabolic defects in a zebrafish pitx2c cardiac arrhythmia model

    Research output: Contribution to journalJournal articleResearchpeer-review

  5. Mode of action of quinoline antimalarial drugs in red blood cells infected by Plasmodium falciparum revealed in vivo

    Research output: Contribution to journalJournal articleResearchpeer-review

  1. ANGPTL4 inactivates lipoprotein lipase by catalyzing the irreversible unfolding of LPL's hydrolase domain

    Research output: Contribution to journalJournal articleResearchpeer-review

  2. Intermittent chylomicronemia caused by intermittent GPIHBP1 autoantibodies

    Research output: Contribution to journalJournal articleResearchpeer-review

  3. Unfolding of monomeric lipoprotein lipase by ANGPTL4: Insight into the regulation of plasma triglyceride metabolism

    Research output: Contribution to journalJournal articleResearchpeer-review

  4. Crystal Structures of Human C4.4A Reveal the Unique Association of Ly6/uPAR/α-neurotoxin Domain

    Research output: Contribution to journalJournal articleResearchpeer-review

  • Anne P Beigneux
  • Christopher M Allan
  • Norma P Sandoval
  • Geoffrey W Cho
  • Patrick J Heizer
  • Rachel S Jung
  • Kimber L Stanhope
  • Peter J Havel
  • Gabriel Birrane
  • Muthuraman Meiyappan
  • John E Gill
  • Masami Murakami
  • Kazuya Miyashita
  • Katsuyuki Nakajima
  • Michael Ploug
  • Loren G Fong
  • Stephen G Young
View graph of relations

Lipoprotein lipase (LPL), the enzyme that hydrolyzes triglycerides in plasma lipoproteins, is assumed to be active only as a homodimer. In support of this idea, several groups have reported that the size of LPL, as measured by density gradient ultracentrifugation, is ∼110 kDa, twice the size of LPL monomers (∼55 kDa). Of note, however, in those studies the LPL had been incubated with heparin, a polyanionic substance that binds and stabilizes LPL. Here we revisited the assumption that LPL is active only as a homodimer. When freshly secreted human LPL (or purified preparations of LPL) was subjected to density gradient ultracentrifugation (in the absence of heparin), LPL mass and activity peaks exhibited the size expected of monomers (near the 66-kDa albumin standard). GPIHBP1-bound LPL also exhibited the size expected for a monomer. In the presence of heparin, LPL size increased, overlapping with a 97.2-kDa standard. We also used density gradient ultracentrifugation to characterize the LPL within the high-salt and low-salt peaks from a heparin-Sepharose column. The catalytically active LPL within the high-salt peak exhibited the size of monomers, whereas most of the inactive LPL in the low-salt peak was at the bottom of the tube (in aggregates). Consistent with those findings, the LPL in the low-salt peak, but not that in the high-salt peak, was easily detectable with single mAb sandwich ELISAs, in which LPL is captured and detected with the same antibody. We conclude that catalytically active LPL can exist in a monomeric state.

Original languageEnglish
JournalProceedings of the National Academy of Sciences of the United States of America
Volume116
Issue number13
Pages (from-to)6319-6328
Number of pages10
ISSN0027-8424
DOIs
Publication statusPublished - 26 Mar 2019

    Research areas

  • Lipase, Lipolysis, Triglycerides, Chromatography, Agarose, Cricetulus, Humans, Receptors, Lipoprotein/blood, Lipoprotein Lipase/blood, Triglycerides/metabolism, Ultracentrifugation, Epitopes, Animals, Chromatography, Affinity, Centrifugation, Density Gradient/methods, Cattle, Sepharose/analogs & derivatives, Heparin, CHO Cells

ID: 56851635