Inverse radiotherapy planning based on bioeffect modelling for locally advanced left-sided breast cancer

Line Bjerregaard Stick, Ivan Richter Vogelius, Arezoo Modiri, Stephanie Renee Rice, Maja Vestmø Maraldo, Amit Sawant, Søren M Bentzen

4 Citations (Scopus)

Abstract

BACKGROUND AND PURPOSE: Treatment planning of radiotherapy (RT) for left-sided breast cancer is a challenging case. Several competing concerns are incorporated at present through protocol-defined dose-volume constraints, e.g. cardiac exposure and target coverage. Such constraints are limited by neglecting patient-specific risk factors (RFs). We propose an alternative RT planning method based solely on bioeffect models to minimize the estimated risks of breast cancer recurrence (BCR) and radiation-induced mortality endpoints considering patient-specific factors.

METHODS AND MATERIALS: Thirty-nine patients with left-sided breast cancer treated with comprehensive post-lumpectomy loco-regional conformal RT were included. An in-house particle swarm optimization (PSO) engine was used to choose fields from a large set of predefined fields and optimize monitor units to minimize the total risk of BCR and mortality caused by radiation-induced ischaemic heart disease (IHD), secondary lung cancer (SLC) and secondary breast cancer (SBC). Risk models included patient age, smoking status and cardiac risk and were developed using published multi-institutional data.

RESULTS: For the clinical plans the normal tissue complication probability, i.e. summed risk of IHD, SLC and SBC, was <3.7% and the risk of BCR was <6.1% for all patients. Median total decrease in mortality or recurrence achieved with individualized PSO plans was 0.4% (range, 0.06-2.0%)/0.5% (range, 0.11-2.2%) without/with risk factors.

CONCLUSIONS: Inverse RT plan optimization using bioeffect probability models allows individualization according to patient-specific risk factors. The modelled benefit when compared to clinical plans is, however, modest in most patients, demonstrating that current clinical plans are close to optimal. Larger gains may be achievable with morbidity endpoints rather than mortality.

Original languageEnglish
JournalRadiotherapy and oncology : journal of the European Society for Therapeutic Radiology and Oncology
Volume136
Pages (from-to)9-14
Number of pages6
ISSN0167-8140
DOIs
Publication statusPublished - 2019

Keywords

  • Breast cancer
  • Optimization
  • Outcome modelling
  • Treatment planning

Fingerprint

Dive into the research topics of 'Inverse radiotherapy planning based on bioeffect modelling for locally advanced left-sided breast cancer'. Together they form a unique fingerprint.

Cite this